1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
//! # NFA Regex
//!
//! A non finite automata regular expression engine library.
//! NFA Regex concept: https://swtch.com/~rsc/regexp/regexp1.html
//! 
//! Implementation of NFA regex engine:
//! 1.   Convert infix string regex pattern to postfix pattern also called reverse polish notation.
//!      https://en.wikipedia.org/wiki/Reverse_Polish_notation
//!      https://www.free-online-calculator-use.com/infix-to-postfix-converter.html
//! 2.   Build the NFA regex engine from the postfix notation.
//!      
//! List of supported operators for NFA regex:
//! | Operator     | Description
//! |--------------|---------------------------------------------------------------------------------------------------------------------------------------------------
//! | \            | Escape character
//! | -            | Range operator. E.g. [0-9a-z]
//! | .            | Any displayable character (also called metacharacter)
//! | []           | Square bracket, Ors characters inside
//! | ()           | Round bracket, groups characters (concats)
//! | *            | Zero or more character repeatition
//! | +            | One or more charatcer repeatition
//! | ?            | Zero or one character repeatition
//! | {m,n} or {n} | Curly bracket for character repeatition with min and max limit count
//! | ^            | Exclude characters used only inside [] at the begin. E.g. [^ab] - string must not have a and b.
//! | |            | ORs characters or group. (Do not use inside [])
//! |--------------|---------------------------------------------------------------------------------------------------------------------------------------------------
//!
//! Operator precedance and associativity, table taken from unix: (Not all operators are supported in below implementation.)
//! +---+----------------------------------------------------------+
//! |   |             ERE Precedence (from high to low)            |
//! +---+----------------------------------------------------------+
//! | 1 | Collation-related bracket symbols | [==] [::] [..]       |
//! | 2 | Escaped characters                | \<special character> |
//! | 3 | Bracket expression                | []                   |
//! | 4 | Grouping                          | ()                   |
//! | 5 | Single-character-ERE duplication  | * + ? {m,n}          |
//! | 6 | Concatenation                     |                      |
//! | 7 | Anchoring                         | ^ $                  |
//! | 8 | Alternation                       | |                    |
//! +---+-----------------------------------+----------------------+

/// Regex operator enum. Almost all operators are single character except {m,n} operator, hence the need of
/// enum to store these operators as enum state. So, repeat operators are stored separetely and other single
/// character operators stores as single character wrapped in enum variant.
#[derive(Debug, Clone, Eq, PartialEq)]
enum RegexOp {
    // Repeat operators with following cases:
    // + => (1, MAX)
    // * => (0, MAX)
    // ? => (0, 1)
    // {m,n} => (m, n) where m < n, m >= 0, n > 0
    // {n} => (n, n) where n > 1
    ByRp(isize, isize),
    // All other single character operators
    Op(char),
}

/// Out index pointer wrapper used in Empty/Split NFA state.
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
enum StateOut {
    Out(usize),                        // Used when no limit on repeat count i.e. indefinite repeat. Only stores index into NFA engine vector.
    Repeat(usize, isize, isize, isize) // Used when there is limit on repeat count. Stores index into NFA engine vector, min and max repeat values and current repeat count
}

/// NFA regex engine states
#[derive(Debug, Clone, Eq, PartialEq)]
enum State {
    AnyChar(usize),            // '.' metacharacter to include all displayable characters with out index pointer.
    Char(char, usize),         // Input character must match this character, out index points to next state.
    NotChar(char, usize),      // Input character must not match this character, out index points to next state.
    Range(char, char, usize),  // Input character must fall within range of characters, out index points to next state.
    Oprtr(RegexOp),            // Determines the function or type of operation to be performed over last fragment of NFA regex state/states. This is temporary state.
    EmptySplit(Vec<StateOut>), // Intermediate state with no value. Becomes split when building nfa engine state for '|' otherwise becomes empty.
    Fragment(usize, usize),    // Temporary state called NFA fragment to store start and end of partially built NFA engine while NFA engine is being parsed and built.
    Start(usize),              // Determines start of NFA engine, out points to first state.
    Match                      // Determines match or end of NFA engine.
}

// Type alias used locally for easy code readability
type Postfix = Vec<State>;
type NfaEngine = Vec<State>;

/// NFA regex engine
#[derive(Debug, Clone)]
pub struct Regex {
    nfa_engine: NfaEngine, // List of NFA states in vector connected together to make NFA regex engine
    start: usize,          // Index into nfa_engine at which the engine starts.
}

/// Implementing regex methods or functions
impl Regex {
    /// Takes infix regex pattern string and turns it to postfix pattern. Also throws syntax errors.
    fn infix_to_postfix(s: &str) -> Result<Postfix, &'static str> {
        // This is compile stage where we generate syntax errors i.e. check the grammar and convert expression to postfix for easy linking and generating regex engine.
        if s.is_empty() { return Err("Syntax Error: Input pattern string is empty."); }

        let mut postfix: Postfix = vec![]; // Stores pattern in postfix format than in infix format.
        let mut stack: Vec<RegexOp> = vec![]; // Temporarily stores all operators as per their precedance and associativity. Almost all ops are left to right associative.
        let mut square_brkt = false; // True if '[' encountered, false when ']' encountered after '['.
        let mut char_pushed = false; // True when last thing pushed to postfix is char or closing bracket ')' or ']', false otherwise.
        let mut not_char = false; // True when '^' is encountered as it applies to entire group, so it has to stay true till end of group.
        let mut round_brkt = 0; // Counts that number of opening brackets equal to closing one. Does not verify that brackets are at right place and no syntax error.
        let mut chars = s.chars().fuse(); // Create char iterator which stops as soon as first None is returned

        // Pushes operator to stack respecting operator precedance and associativity.
        let push_op_to_stack = |op: RegexOp, st: &mut Vec<RegexOp>, p: &mut Postfix| {
            use RegexOp::*;
            match op {
                ByRp(_, _) => {
                    // If its repeat operator like *, +, ?, {m,n}, then pop all earlier repeat ops from stack and push to postfix and finally push our new repeat op.
                    // All ops are left to right associative
                    while let Some(in_op) = st.pop() {
                        match in_op {
                            ByRp(_, _) => p.push(State::Oprtr(in_op)), // Pop all same and high precedance ops and push to postfix
                            Op(_) => { st.push(in_op); break; } // Do nothing as other ops are low precedance and high can push over low precedance.
                        }
                    }
                }
                Op(c) => {
                    match c {
                        '#' => {
                            // Repeat/bypass op precedes # and is left to right associative. Pop high and same precedance ops and push into postfix. Finally push '#'
                            while let Some(in_op) = st.pop() {
                                match in_op {
                                    ByRp(_, _) | Op('#') => p.push(State::Oprtr(in_op)),
                                    _ => { st.push(in_op); break; }
                                }
                            }
                        }
                        '|' => {
                            // # precedes |, same behaviour for | as for #
                            while let Some(in_op) = st.pop() {
                                match in_op {
                                    ByRp(_, _) | Op('#') | Op('|') => p.push(State::Oprtr(in_op)),
                                    _ => { st.push(in_op); break; }
                                }
                            }
                        }
                        _ => () // Nothing to be done for other operators.
                    }
                }
            }
            st.push(op);
        };

        while let Some(c) = chars.next() {
            // Operators matched in precedance for readability.
            match c {
                '-' => {
                    // The operator must be inside [] and must have LHS char pushed, otherwise throw error.
                    if square_brkt && char_pushed {
                        push_op_to_stack(RegexOp::Op(c), &mut stack, &mut postfix);
                    } else {
                        return Err("Syntax Error: Either missing LHS char in range or used '-' operator outside [].");
                    }
                    // Pushing an operator must make this flag false
                    char_pushed = false;
                }
                '[' | '(' => {
                    // Cannot have another [ or () operator inside existing [ operator.
                    if square_brkt {
                        match c {
                            '[' => return Err("Syntax Error: Nested square brackets '[]' not allowed."),
                            '(' => return Err("Syntax Error: Grouping '()' inside square brackets '[]' are not allowed."),
                            _ => ()
                        }
                    } else {
                        match c {
                            '[' => square_brkt = true,
                            '(' => round_brkt += 1,
                            _ => ()
                        }
                    }

                    // Pop all operators before pushing '[' or '('.
                    while let Some(op) = stack.pop() {
                        // Every unary operator (E.g. *, +, ?, {m,n}) and ], ) ops along with character should be followed by # when new [ or ( starts.
                        // E.g. [\\+\\-]?[0-9]+ => After unary ? operator # must be pushed to concat [\\+\\-]? to [0-9]+.
                        // Hence, making char_pushed true in below operation of operator poping out of stack and pushed to postfix.
                        use RegexOp::*;
                        match op {
                            ByRp(_, _) => { postfix.push(State::Oprtr(op)); char_pushed = true; }
                            _ => { stack.push(op); break; }
                        }
                    }
                    if char_pushed {
                        push_op_to_stack(RegexOp::Op('#'), &mut stack, &mut postfix);
                    }
                    stack.push(RegexOp::Op(c));
                    char_pushed = false;
                }
                ']' => {
                    // Close square bracket if opened, otherwise error out. Also, make sure only operators allowed inside [] are '-' and '|'.
                    if !square_brkt {
                        return Err("Syntax Error: No matching '[' found.");
                    }
                    use RegexOp::*;
                    while let Some(op) = stack.pop() {
                        match op {
                            Op('-') | Op('|') => postfix.push(State::Oprtr(op)),
                            Op('[') => { square_brkt = false; break; }
                            _ => return Err("Syntax Error: Invalid operator inside [].")
                        }
                    }
                    char_pushed = true;
                    not_char = false;
                }
                ')' => {
                    // Make sure ) is after ( and not inside []. Pop all operators till ( is reached and push them to postfix.
                    if square_brkt {
                        return Err("Syntax Error: '()' not allowed inside '[]'.");
                    }
                    use RegexOp::*;
                    while let Some(op) = stack.pop() {
                        match op {
                            Op('(') => { round_brkt -= 1; break; }
                            _ => postfix.push(State::Oprtr(op))
                        }
                    }
                    char_pushed = true;
                }
                '*' | '+' | '?' => {
                    // Unary operator with unknown repetition bound
                    // When m = 0, n = isize::MAX, then bypass is allowed with theoretical infinite repeatition
                    // When m = 1, n = isize::MAX, then bypass is not allowed with theoretical infinite repeatition
                    // When m = 0, n = 1, then bypass is allowed with no repeatition.
                    // When m = -1, n = -1, then its error. This never happens as the match arm we are in already took care of that but the following below
                    //   match arm fails to compile if _ is not used.
                    let op = match c {
                        '*' => RegexOp::ByRp(0, isize::MAX),
                        '+' => RegexOp::ByRp(1, isize::MAX),
                        '?' => RegexOp::ByRp(0, 1),
                        _ => RegexOp::ByRp(-1, -1)
                    };
                    push_op_to_stack(op, &mut stack, &mut postfix);
                    char_pushed = false;
                }
                '{' => {
                    // Unary operator with fixed number of repeatition.
                    // When m = 0 and n > 1 and n < isize::MAX, then bypass is allowed with n repeatitions.
                    // When m = 1 and n > 1 and n < isize::MAX, then bypass is not allowed with n repeatitions.
                    // We read till } operator and then parse numbers to create Repeat operator.
                    let mut nums = String::new();
                    while let Some(ch) = chars.next() {
                        if ch == '}' {
                            break;
                        } else {
                            nums.push(ch);
                        }
                    }
                    let nums: Vec<&str> = nums.split(',').collect();
                    let m: isize;
                    let n: isize;
                    // When only 1 number is given then m = n = num in {num}
                    // When 2 numbersare given, then m = num1, n = num2 in {num1,num2}
                    // Any different number count, its a syntax error.
                    match nums.len() {
                        1 => {
                            if nums[0].is_empty() {
                                return Err("Syntax Error: The value bound m and/or n cannot be empty. Usage {m,n} or {n}, where m > 0 and n > 0.");
                            }
                            m = nums[0].parse::<isize>().unwrap();
                            n = m;
                            if n <= 1 {
                                return Err("Syntax Error: Apply {n} repeat, iff n > 1.");
                            }
                        }
                        2 => {
                            if nums[0].is_empty() || nums[1].is_empty() {
                                return Err("Syntax Error: The value bound m and/or n cannot be empty. Usage {m,n} or {n}, where m > 0 and n > 0.");
                            }
                            m = nums[0].parse::<isize>().unwrap();
                            n = nums[1].parse::<isize>().unwrap();
                            if m > n || m < 0 || n < 1 {
                                return Err("Syntax Error: Apply {m,n} repeat, iff m < n, m >= 0, n > 0");
                            }
                        }
                        _ => return Err("Syntax Error: Use either\n{m,n}, iff m < n, m >= 0, n > 0\nor\n{n}, iff n > 1.")
                    }
                    push_op_to_stack(RegexOp::ByRp(m, n), &mut stack, &mut postfix);
                    char_pushed = false;
                }
                '^' => {
                    // Used only as not operator on characters to disallow them in regex check and is allowed only inside [].
                    if square_brkt {
                        not_char = true;
                    } else {
                        return Err("Syntax Error: '^' is only allowed inside '[]'.");
                    }
                    char_pushed = false;
                }
                '|' => {
                    push_op_to_stack(RegexOp::Op(c), &mut stack, &mut postfix);
                    char_pushed = false;
                }
                _ => {
                    // Usual character, not an operator. Also includes operators deals with characters directly.
                    if char_pushed {
                        // Always push concat or '#' op except if the character is inside [], in that case
                        // if stack has last op as '-' then push that to postfix otherwise push '|' operator
                        if square_brkt {
                            if *stack.last().unwrap() == RegexOp::Op('-') {
                                postfix.push(State::Oprtr(stack.pop().unwrap()));
                            }
                            push_op_to_stack(RegexOp::Op('|'), &mut stack, &mut postfix);
                        } else {
                            push_op_to_stack(RegexOp::Op('#'), &mut stack, &mut postfix);
                        }
                    }

                    let mut ch: char = c;
                    let mut anychar = false;
                    // Anything after escape character is character, irrespective of it being followed by operator or character.
                    match c {
                        '\\' => ch = chars.next().unwrap(),
                        '.' => {
                            if not_char {
                                return Err("Syntax Error: '^' cannot be applied to '.' metacharacter.");
                            }
                            anychar = true
                        }
                        _ => ch = c
                    }
                    // Just in case, pop out any unary operator and push it to postfix. As unary operator applies to characters before this new character we are pushing to postfix.
                    let mut add_concat = false;
                    while let Some(op) = stack.pop() {
                        use RegexOp::*;
                        match op {
                            ByRp(_, _) => { postfix.push(State::Oprtr(op)); add_concat = true; },
                            _ => { stack.push(op); break; }
                        }
                    }
                    // In case we have poped out unary operator, we must add concat operator in stack before pushing character to postfix.
                    if add_concat {
                        push_op_to_stack(RegexOp::Op('#'), &mut stack, &mut postfix);
                    }
                    // Finally, now push char to postfix.
                    if anychar {
                        postfix.push(State::AnyChar(usize::MAX));
                    } else if not_char {
                        postfix.push(State::NotChar(ch, usize::MAX));
                    } else {
                        postfix.push(State::Char(ch, usize::MAX));
                    }
                    char_pushed = true;
                }
            }
        }
        
        // Make sure no square bracket or round bracket exists after above loop
        if square_brkt {
            return Err("Syntax Error: Missing ']' bracket.");
        }
        if round_brkt > 0 || round_brkt < 0 {
            return Err("Syntax Error: Missing '(' or ')' grouping operators.");
        }

        // If stack has any operators, append them to postfix.
        while let Some(op) = stack.pop() {
            postfix.push(State::Oprtr(op));
        }

        Ok(postfix)
    }

    /// Pretty printing for postfix pattern expression only used for debugging purpose
    fn _print_postfix(infix: &str, postfix: &Postfix) -> String {
        use State::*;
        let mut postfix_str = format!("\nPrinting postfix: Abbreviation: CH - Character, TY - Type,\nTypes are: o - operator, c - char, n - not char\nInfix Pattern: {}\nCH: ", infix);
        for s in postfix.iter() {
            match s {
                AnyChar(_) => postfix_str.push_str(". "),
                Char(c, _) | NotChar(c, _) => postfix_str.push_str(&format!("{} ", c)),
                Oprtr(op) => match op {
                    RegexOp::ByRp(m, n) => {
                        if *m == 0 && *n == 1 {
                            postfix_str.push_str("? ");
                        } else if *m == 0 && *n == isize::MAX {
                            postfix_str.push_str("* ");
                        } else if *m == 1 && *n == isize::MAX {
                            postfix_str.push_str("+ ");
                        } else {
                            // postfix_str.push_str(&format!("\{{},{}\}", *m, *n));
                            postfix_str.push_str("@ "); // Replacing multiple chars with single char
                        }
                    }
                    RegexOp::Op(c) => postfix_str.push_str(&format!("{} ", c))
                }
                _ => ()
            }
        }

        postfix_str.push_str("\nTY: ");
        for s in postfix.iter() {
            match s {
                AnyChar(_) | Char(_, _) => postfix_str.push_str("c "),
                NotChar(_, _) => postfix_str.push_str("n "),
                Oprtr(_) => postfix_str.push_str("o "),
                _ => ()
            }
        }

        postfix_str.push('\n');
        postfix_str
    }

    /// Takes postfix pattern expression and builds NFA regex engine from it. Returns parsing error if fails.
    fn postfix_to_nfa(postfix: Postfix) -> Result<Self, &'static str> {
        use State::*;
        use RegexOp::*;
        use StateOut::*;

        // This is where we parse postfix expression and generate regex engine, just like linking and generating binary.
        if postfix.is_empty() { return Err("Parse Error: Empty postfix expression."); }

        let mut nfa_engine: NfaEngine = vec![]; // NFA regex engine vector comprised of NFA states
        let mut stack: NfaEngine = vec![]; // Temporary stack of NFA states to help build NFA engine
        let mut s1: State; // Temporary state s1 and s2
        let mut s2: State;
        let mut i0: usize = 0; // Temporary index i0 and i1
        let mut i1: usize = 0;

        // When deleting Empty/Split state to reduce unnecesary duplicate states since they are merged then
        // - update index from old to new if its old index as old data merged to new index
        //   OR
        // - decrement index by 1 if it is greater than old index
        let dec_1_if_ge = |nfa: &mut NfaEngine, old_idx: usize, new_idx: usize| {
            nfa.iter_mut().for_each(|s| {
                match s {
                    AnyChar(o) | Char(_, o) | NotChar(_, o) | Range(_, _, o) =>
                    if *o > old_idx { *o -= 1 } else if *o == old_idx { *o = new_idx }
                    EmptySplit(v) => v.into_iter().for_each(|o| { match o {
                        Out(ao) | Repeat(ao, _, _, _) => if *ao > old_idx { *ao -= 1 } else if *ao == old_idx { *ao = new_idx } }}),
                    _ => ()
                }
            });
        };

        // True if vector inside Empty/Split state has given index `i` irrespective of wrapped enum variant, false otherwise
        let vec_has_i = |v: &Vec<StateOut>, i: usize| {
            v.iter().any(|e| { match e { Out(o) | Repeat(o, _, _, _) => *o == i } })
        };

        for s in postfix.into_iter() {
            match s {
                AnyChar(_) | Char(_, _) | NotChar(_, _) => stack.push(s), // Push character types as is to stack for later processing
                Oprtr(op) => match op {
                    ByRp(m, n) => {
                        s1 = stack.pop().unwrap();
                        match s1 {
                            AnyChar(ref mut o) | Char(_, ref mut o) | NotChar(_, ref mut o) | Range(_, _, ref mut o) => {
                                // Push empty/split -> chara type state -> empty/split
                                i0 = nfa_engine.len();
                                // If min repeat value is 0, then connect bypass otherwise no bypass.
                                if m == 0 {
                                    nfa_engine.push(EmptySplit(vec![Out(i0 + 1), Out(i0 + 2)]));
                                } else {
                                    nfa_engine.push(EmptySplit(vec![Out(i0 + 1)]));
                                }
                                *o = i0 + 2;
                                nfa_engine.push(s1);
                                // - If max repeat value is MAX isize value then do indefinite repeat using Out.
                                // - If max repeat value is less than MAX but greater than 1 then do definite repeat using Repeat.
                                // - Otherwise no repeat, just push Empty/Split with empty vector to complete the repeat operator implementation.
                                if n == isize::MAX {
                                    nfa_engine.push(EmptySplit(vec![Out(i0)]));
                                } else if n > 1 {
                                    nfa_engine.push(EmptySplit(vec![Repeat(i0, m, n, 0)]));
                                } else {
                                    nfa_engine.push(EmptySplit(vec![]));
                                }
                                i1 = nfa_engine.len() - 1;
                            }
                            Fragment(b, e) => match (&nfa_engine[b], &nfa_engine[e]) {
                                (EmptySplit(bv), EmptySplit(ev)) => {
                                    // Multiple repeat operators to fragment not allowed
                                    if vec_has_i(bv, e) || vec_has_i(ev, b) {
                                        return Err("Parse Error: Cannot apply repeat or duplication operator twice.");
                                    }
                                    // If end Empty/Split state is not empty i.e. points back to state after begin state, then push new Empty/Split state at the end.
                                    // Otherwise, use existing Empty/Split states at begin and end indices.
                                    i0 = b;
                                    if !ev.is_empty() {
                                        i1 = nfa_engine.len();
                                        if let EmptySplit(ve) = &mut nfa_engine[e] {
                                            ve.push(Out(i1));
                                        }
                                        if n == isize::MAX {
                                            nfa_engine.push(EmptySplit(vec![Out(b)]));
                                        } else if n > 1 {
                                            nfa_engine.push(EmptySplit(vec![Repeat(b, m, n, 0)]));
                                        } else {
                                            nfa_engine.push(EmptySplit(vec![]));
                                        }
                                    } else {
                                        if let EmptySplit(ve) = &mut nfa_engine[e] {
                                            // Empty/Split already exists at the end, nothing to be done in case n == 1 i.e. no repeat.
                                            if n == isize::MAX { ve.push(Out(b)); } else if n > 1 { ve.push(Repeat(b, m, n, 0)); }
                                        }
                                        i1 = e;
                                    }
                                    // Below code is common for both if and else part i.e. bypass from begin is common operation
                                    if let EmptySplit(vb) = &mut nfa_engine[b] {
                                        if m == 0 { vb.push(Out(i1)); }
                                    }
                                }
                                (_, _) => {
                                    // Irrespective of begin and end index states, push 2 Empty/Split states at begin and end as
                                    // Empty/Split -> {Fragment (Need no push as it already exists in nfa engine)} -> Empty/Split
                                    i0 = nfa_engine.len();
                                    i1 = i0 + 1;
                                    match &mut nfa_engine[e] {
                                        AnyChar(o) | Char(_, o) | NotChar(_, o) | Range(_, _, o) => *o = i1,
                                        EmptySplit(v) => v.push(Out(i1)),
                                        _ => ()
                                    }
                                    if m == 0 {
                                        nfa_engine.push(EmptySplit(vec![Out(b), Out(i1)]));
                                    } else {
                                        nfa_engine.push(EmptySplit(vec![Out(b)]));
                                    }
                                    if n == isize::MAX {
                                        nfa_engine.push(EmptySplit(vec![Out(i0)]));
                                    } else if n > 1 {
                                        nfa_engine.push(EmptySplit(vec![Repeat(i0, m, n, 0)]));
                                    } else {
                                        nfa_engine.push(EmptySplit(vec![]));
                                    }
                                }
                            }
                            _ => ()
                        }
                        stack.push(Fragment(i0, i1));
                    }
                    Op('-') => {
                        // First pop from stack is RHS and second pop is LHS for any operator.
                        s2 = stack.pop().unwrap(); // Pop out RHS
                        s1 = stack.pop().unwrap(); // Pop out LHS
                        match (s1, s2) {
                            (Char(b, _), Char(e, _)) => {
                                if b >= e {
                                    return Err("Parse Error: Characters not in range in [b-e].");
                                }
                                stack.push(Range(b, e, usize::MAX));
                            }
                            (_, _) => return Err("Parse Error: Invalid state type for '-' operator.")
                        }
                    }
                    Op('#') => {
                        s2 = stack.pop().unwrap();
                        s1 = stack.pop().unwrap();
                        match (&mut s1, &mut s2) {
                            // Why is below not supported? E0658
                            // or-patterns syntax is experimental
                            // see issue #54883 <https://github.com/rust-lang/rust/issues/54883> for more information rustc(E0658)
                            // (AnyChar(ref mut o1) | Char(_, ref mut o1) | NotChar(_, ref mut o1) | Range(_, _, ref mut o1),
                            // AnyChar(ref mut o2) | Char(_, ref mut o2) | NotChar(_, ref mut o2) | Range(_, _, ref mut o2)) => {}
                            (AnyChar(o), AnyChar(_)) |
                            (AnyChar(o), Char(_, _)) |
                            (AnyChar(o), NotChar(_, _)) |
                            (AnyChar(o), Range(_, _, _)) |
                            (Char(_, o), AnyChar(_)) |
                            (Char(_, o), Char(_, _)) |
                            (Char(_, o), NotChar(_, _)) |
                            (Char(_, o), Range(_, _, _)) |
                            (NotChar(_, o), AnyChar(_)) |
                            (NotChar(_, o), Char(_, _)) |
                            (NotChar(_, o), NotChar(_, _)) |
                            (NotChar(_, o), Range(_, _, _)) |
                            (Range(_, _, o), AnyChar(_)) |
                            (Range(_, _, o), Char(_, _)) |
                            (Range(_, _, o), NotChar(_, _)) |
                            (Range(_, _, o), Range(_, _, _)) => {
                                i0 = nfa_engine.len();
                                i1 = nfa_engine.len() + 1;
                                *o = i1;
                                nfa_engine.push(s1);
                                nfa_engine.push(s2);
                            }
                            (Fragment(b, e), AnyChar(_)) |
                            (Fragment(b, e), Char(_, _)) |
                            (Fragment(b, e), NotChar(_, _)) |
                            (Fragment(b, e), Range(_, _, _)) => {
                                i0 = *b;
                                i1 = nfa_engine.len();
                                nfa_engine.push(s2);
                                match &mut nfa_engine[*e] {
                                    AnyChar(o) | Char(_, o) | NotChar(_, o) | Range(_, _, o) => *o = i1,
                                    EmptySplit(v) => v.push(Out(i1)),
                                    _ => ()
                                }
                            }
                            (AnyChar(o), Fragment(b, e)) |
                            (Char(_, o), Fragment(b, e)) |
                            (NotChar(_, o), Fragment(b, e)) |
                            (Range(_, _, o), Fragment(b, e)) => {
                                *o = *b;
                                i0 = nfa_engine.len();
                                nfa_engine.push(s1);
                                i1 = *e;
                            }
                            (Fragment(bl, el), Fragment(br, er)) => {
                                // l at end of index means LHS and r means RHS.
                                match &nfa_engine[*br] {
                                    AnyChar(_) | Char(_, _) | NotChar(_, _) | Range(_, _, _) => match &mut nfa_engine[*el] {
                                        AnyChar(o) | Char(_, o) | NotChar(_, o) | Range(_, _, o) => *o = *br,
                                        EmptySplit(v) => v.push(Out(*br)),
                                        _ => ()
                                    }
                                    EmptySplit(tv) => {
                                        let ttv = tv.clone();
                                        match &mut nfa_engine[*el] {
                                            AnyChar(o) | Char(_, o) | NotChar(_, o) | Range(_, _, o) => *o = *br,
                                            EmptySplit(v) => {
                                                // If LHS fragment end = Empty/Split and RHS fragment begin = Empty/Split then
                                                // Push all data from RHS fragment begin vector to LHS fragment end vector of Empty/Split state.
                                                // Delete RHS fragment begin state. This is to avoid multiple Empty/Split state when one is enough to do the job.
                                                // Append RHS fragment begin Empty/Split vector values to LHS fragment end Empty/Split vector with no element duplication
                                                ttv.into_iter().for_each(|te| { if !v.contains(&te) { v.push(te); }});
                                                // Update out index of states inside nfa_engine vector.
                                                dec_1_if_ge(&mut nfa_engine, *br, *el);
                                                // If index is greater than or equal to br, decrement by 1
                                                *bl = if *bl > *br { *bl - 1 } else if *bl == *br { *el } else { *bl };
                                                *er = if *er > *br { *er - 1 } else if *bl == *br { *el } else { *er };
                                                // Remove the empty/split state at RHS fragment end index
                                                nfa_engine.remove(*br);
                                            }
                                            _ => ()
                                        }
                                    }
                                    _ => ()
                                }
                                i0 = *bl;
                                i1 = *er;
                            }
                            _ => ()
                        }
                        stack.push(Fragment(i0, i1));
                    }
                    Op('|') => {
                        s2 = stack.pop().unwrap();
                        s1 = stack.pop().unwrap();
                        match (&mut s1, &mut s2) {
                            (AnyChar(ol), AnyChar(or)) |
                            (AnyChar(ol), Char(_, or)) |
                            (AnyChar(ol), NotChar(_, or)) |
                            (AnyChar(ol), Range(_, _, or)) |
                            (Char(_, ol), AnyChar(or)) |
                            (Char(_, ol), Char(_, or)) |
                            (Char(_, ol), NotChar(_, or)) |
                            (Char(_, ol), Range(_, _, or)) |
                            (NotChar(_, ol), AnyChar(or)) |
                            (NotChar(_, ol), Char(_, or)) |
                            (NotChar(_, ol), NotChar(_, or)) |
                            (NotChar(_, ol), Range(_, _, or)) |
                            (Range(_, _, ol), AnyChar(or)) |
                            (Range(_, _, ol), Char(_, or)) |
                            (Range(_, _, ol), NotChar(_, or)) |
                            (Range(_, _, ol), Range(_, _, or)) => {
                                i0 = nfa_engine.len();
                                i1 = i0 + 3;
                                *ol = i1;
                                *or = i1;
                                nfa_engine.push(EmptySplit(vec![Out(i0 + 1), Out(i0 + 2)]));
                                nfa_engine.push(s1);
                                nfa_engine.push(s2);
                                nfa_engine.push(EmptySplit(vec![]));
                            }
                            (Fragment(b, e), AnyChar(o)) |
                            (Fragment(b, e), Char(_, o)) |
                            (Fragment(b, e), NotChar(_, o)) |
                            (Fragment(b, e), Range(_, _, o)) => {
                                i0 = nfa_engine.len(); // Index of 1st push to nfa engine
                                match (&nfa_engine[*b], &nfa_engine[*e]) {
                                    (EmptySplit(lv), EmptySplit(rv)) => {
                                        if vec_has_i(lv, *e) || vec_has_i(rv, *b) {
                                            i1 = i0 + 2; // Index of last empty/split
                                            *o = i1;
                                            match &mut nfa_engine[*e] {
                                                AnyChar(oi) | Char(_, oi) | NotChar(_, oi) | Range(_, _, oi) => *oi = i1,
                                                _ => ()
                                            }
                                            nfa_engine.push(EmptySplit(vec![Out(*b), Out(i0 + 1)]));
                                            nfa_engine.push(s2);
                                            nfa_engine.push(EmptySplit(vec![]));
                                        } else {
                                            if let EmptySplit(v) = &mut nfa_engine[*b] {
                                                v.push(Out(i0));
                                                *o = *e;
                                                i0 = *b;
                                                i1 = *e;
                                                nfa_engine.push(s2);
                                            }
                                        }
                                    }
                                    (_, _) => {
                                        i1 = i0 + 2; // Index of last empty/split
                                        *o = i1;
                                        match &mut nfa_engine[*e] {
                                            AnyChar(oi) | Char(_, oi) | NotChar(_, oi) | Range(_, _, oi) => *oi = i1,
                                            _ => ()
                                        }
                                        nfa_engine.push(EmptySplit(vec![Out(*b), Out(i0 + 1)]));
                                        nfa_engine.push(s2);
                                        nfa_engine.push(EmptySplit(vec![]));
                                    }
                                }
                            }
                            (AnyChar(o), Fragment(b, e)) |
                            (Char(_, o), Fragment(b, e)) |
                            (NotChar(_, o), Fragment(b, e)) |
                            (Range(_, _, o), Fragment(b, e)) => {
                                i0 = nfa_engine.len();
                                match (&nfa_engine[*b], &nfa_engine[*e]) {
                                    (EmptySplit(_), EmptySplit(_)) => {
                                        if let EmptySplit(v) = &mut nfa_engine[*b] {
                                            v.push(Out(i0));
                                            *o = *e;
                                            i0 = *b;
                                            i1 = *e;
                                            nfa_engine.push(s1);
                                        }
                                    }
                                    (_, _) => {
                                        i1 = i0 + 2;
                                        *o = i1;
                                        match &mut nfa_engine[*e] {
                                            AnyChar(oi) | Char(_, oi) | NotChar(_, oi) | Range(_, _, oi) => *oi = i1,
                                            _ => ()
                                        }
                                        nfa_engine.push(EmptySplit(vec![Out(*b), Out(i0 + 1)]));
                                        nfa_engine.push(s1);
                                        nfa_engine.push(EmptySplit(vec![]));
                                    }
                                }
                            }
                            (Fragment(bl, el), Fragment(br, er)) => 
                            match (nfa_engine[*bl].clone(), nfa_engine[*el].clone(), nfa_engine[*br].clone(), nfa_engine[*er].clone()) {
                                (EmptySplit(bvl), EmptySplit(evl),
                                EmptySplit(bvr), EmptySplit(evr)) => {
                                    // If LHS and/or RHS fragment have begin bypass to end or, end repeat to begin or any state after begin then
                                    // push 2 new Empty/Split states at begin and end, make them point to 2 fragments begin and fragment pointing to last state.
                                    // Otherwise, Merge RHS fragment begin to LHS fragment begin and delete LHS fragment begin state, do same for RHS end states.
                                    if !vec_has_i(&bvl, *el) && !vec_has_i(&bvr, *er) && !vec_has_i(&evl, *bl) && !vec_has_i(&evr, *br) {
                                        if let EmptySplit(v) = &mut nfa_engine[*bl] {
                                            bvr.into_iter().for_each(|e| { if !v.contains(&e) { v.push(e); }});
                                        }
                                        if let EmptySplit(v) = &mut nfa_engine[*el] {
                                            evr.into_iter().for_each(|e| { if !v.contains(&e) { v.push(e); }});
                                        }
                                        dec_1_if_ge(&mut nfa_engine, *br, *bl);
                                        dec_1_if_ge(&mut nfa_engine, *er, *el);
                                        nfa_engine.remove(*br);
                                        nfa_engine.remove(*er);
                                        i0 = *bl;
                                        i1 = *el;
                                    } else {
                                        i0 = nfa_engine.len();
                                        nfa_engine.push(EmptySplit(vec![Out(*bl), Out(*br)]));
                                        i1 = nfa_engine.len();
                                        nfa_engine.push(EmptySplit(vec![]));
                                        if let EmptySplit(v) = &mut nfa_engine[*el] {
                                            v.push(Out(i1));
                                        }
                                        if let EmptySplit(v) = &mut nfa_engine[*er] {
                                            v.push(Out(i1));
                                        }
                                    }
                                }
                                (EmptySplit(bvl), EmptySplit(evl), _, _) => {
                                    // If begin and end Empty/Split states are not tied in repeat operation, reuse them as begin and end states for RHS fragment.
                                    // Otherwise, push new Empty/Split states with both fragments fall in between.
                                    if bvl.contains(&Out(*el)) || evl.contains(&Out(*bl)) {
                                        //              |--> Fragment1 --v
                                        // Empty/Split -                 Empty/Split
                                        //              |--> Fragment2 --^
                                        i0 = nfa_engine.len();
                                        nfa_engine.push(EmptySplit(vec![Out(*bl), Out(*br)]));
                                        i1 = nfa_engine.len();
                                        nfa_engine.push(EmptySplit(vec![]));
                                        if let EmptySplit(v) = &mut nfa_engine[*el] {
                                            v.push(Out(i1));
                                        }
                                        match &mut nfa_engine[*er] {
                                            AnyChar(o) | Char(_, o) | NotChar(_, o) | Range(_, _, o) => *o = i1,
                                            EmptySplit(v) => v.push(Out(i1)),
                                            _ => ()
                                        }
                                    } else {
                                        // Empty/Split -> ...States... -> Empty/Split
                                        //           \                     ^
                                        //            -->  Fragment 2 -----/
                                        if let EmptySplit(v) = &mut nfa_engine[*bl] {
                                            v.push(Out(*br));
                                        }
                                        match &mut nfa_engine[*er] {
                                            AnyChar(o) | Char(_, o) | NotChar(_, o) | Range(_, _, o) => *o = *el,
                                            EmptySplit(v) => v.push(Out(*el)),
                                            _ => ()
                                        }
                                        i0 = *bl;
                                        i1 = *el;
                                    }
                                }
                                (_, _, EmptySplit(bvr), EmptySplit(evr)) => {
                                    if bvr.contains(&Out(*er)) || evr.contains(&Out(*br)) {
                                        i0 = nfa_engine.len();
                                        nfa_engine.push(EmptySplit(vec![Out(*bl), Out(*br)]));
                                        i1 = nfa_engine.len();
                                        nfa_engine.push(EmptySplit(vec![]));
                                        if let EmptySplit(v) = &mut nfa_engine[*er] {
                                            v.push(Out(i1));
                                        }
                                        match &mut nfa_engine[*el] {
                                            AnyChar(o) | Char(_, o) | NotChar(_, o) | Range(_, _, o) => *o = i1,
                                            EmptySplit(v) => v.push(Out(i1)),
                                            _ => ()
                                        }
                                    } else {
                                        if let EmptySplit(v) = &mut nfa_engine[*br] {
                                            v.push(Out(*bl));
                                        }
                                        match &mut nfa_engine[*el] {
                                            AnyChar(o) | Char(_, o) | NotChar(_, o) | Range(_, _, o) => *o = *er,
                                            EmptySplit(v) => v.push(Out(*er)),
                                            _ => ()
                                        }
                                        i0 = *br;
                                        i1 = *er;
                                    }
                                }
                                (_, _, _, _) => {
                                    // Empty/Split -> (Fragment1 | Fragment2) -> Empty/Split
                                    i0 = nfa_engine.len();
                                    nfa_engine.push(EmptySplit(vec![Out(*bl), Out(*br)]));
                                    i1 = nfa_engine.len();
                                    nfa_engine.push(EmptySplit(vec![]));
                                    match &mut nfa_engine[*el] {
                                        AnyChar(o) | Char(_, o) | NotChar(_, o) | Range(_, _, o) => *o = i1,
                                        _ => ()
                                    }
                                    match &mut nfa_engine[*er] {
                                        AnyChar(o) | Char(_, o) | NotChar(_, o) | Range(_, _, o) => *o = i1,
                                        _ => ()
                                    }
                                }
                            }
                            _ => ()
                        }
                        stack.push(Fragment(i0, i1));
                    }
                    _ => () // End match arm of Oprtr
                }
                _ => ()
            }
        }

        // Pop out only remaining fragment inside stack. Push Start and Match around the fragment.
        // If user regex pattern only contain a single character type, then handle it separetely as [Start -> s1 -> Match]
        // Otherwise, just push start and match as [Start -> {s1(begin) ... s1(end)} -> Match], where content inside {} is not pushed to nfa_engine.
        s1 = stack.pop().unwrap();
        match &mut s1 {
            AnyChar(o) | Char(_, o) | NotChar(_, o) | Range(_, _, o) => {
                i0 = nfa_engine.len() + 1;
                nfa_engine.push(Start(i0));
                *o = i0 + 1;
                nfa_engine.push(s1);
                nfa_engine.push(Match);
            }
            Fragment(b, e) => {
                i0 = nfa_engine.len();
                nfa_engine.push(Start(*b));
                i1 = nfa_engine.len();
                nfa_engine.push(Match);
                match &mut nfa_engine[*e] {
                    AnyChar(o) | Char(_, o) | NotChar(_, o) | Range(_, _, o) => *o = i1,
                    EmptySplit(v) => v.push(Out(i1)),
                    _ => ()
                }
            }
            _ => return Err("Parse Error: Stack contains invalid NFA state type.")
        }

        // Unused state inside temporary stack.
        if !stack.is_empty() {
            return Err("Parse Error: Stack is not empty, contains rouge NFA states.");
        }

        // Invalid state inside nfa engine.
        if nfa_engine.iter().any(|s| { match s{ Oprtr(_) | Fragment(_, _) => true, _ => false }}) {
            return Err("Parse Error: Invalid state type 'Fragment' or 'Operator' in nfa regex engine.");
        }

        Ok(Regex { nfa_engine, start: i0 })
    }

    /// Pretty printing of NFA regex engine states for debug purpose only.
    fn _print_nfa_engine(&self) -> String {
        use State::*;
        use StateOut::*;
        let mut nfa_str = String::from("\nPrinting NFA engine.");
        if self.nfa_engine.is_empty() {
            nfa_str.push_str("Empty NFA state engine.");
        } else {
            nfa_str.push_str(&format!("NFA engine starts at index {}.\n[i]:    <NFA State: {{Char}}| out => NFA State Data>\n", self.start));
            for (i, s) in self.nfa_engine.iter().enumerate() {
                nfa_str.push_str(&format!("[{}]:\t", i));
                match s {
                    AnyChar(o) => nfa_str.push_str(&format!("AnyChar | o => {}\n", o)),
                    Char(c, o) => nfa_str.push_str(&format!("Char: {} | o => {}\n", c, o)),
                    NotChar(c, o) => nfa_str.push_str(&format!("NotChar: {} | o => {}\n", c, o)),
                    Range(b, e, o) => nfa_str.push_str(&format!("Range: {}-{} | o => {}\n", b, e, o)),
                    EmptySplit(v) => {
                        nfa_str.push_str("Empty/Split | o => ");
                        v.iter().for_each(|o| { match o {
                            Out(ao) => nfa_str.push_str(&format!("Out({}), ", ao)),
                            Repeat(ao, m, n, _) => nfa_str.push_str(&format!("Repeat(o={},m={},n={}), ", ao, m, n))
                        }});
                        nfa_str.push('\n');
                    }
                    Start(o) => nfa_str.push_str(&format!("Start | o => {}\n", o)),
                    Match => nfa_str.push_str("Match\n"),
                    _ => ()
                }
            }
        }
        nfa_str
    }

    /// Clears the counter inside repeat state from Empty/Split state's vector for all states inside nfa engine.
    fn clear_repeat_out_counter(&mut self) {
        self.nfa_engine.iter_mut().for_each(|s| {
            if let State::EmptySplit(v) = s {
                v.into_iter().for_each(|e| { if let StateOut::Repeat(_, _, _, c) = e { *c = 0; } });
            }
        });
    }

    /// From the current list of index into nfa engine, gets new list of index of character type states in nfa engine.
    /// Also handles repeat count for repeat type of state.
    fn get_next_states(&mut self, states: &mut Vec<usize>) {
        use State::*;
        use StateOut::*;

        let mut i = 0;
        let mut idx: usize; // index into nfa engine
        let mut size = states.len(); // Size of list of indices into state engine
        let mut current_states = states.clone(); // Update new indices into received state index vector, move input indices to local vector
        states.clear();

        while i < size {
            idx = current_states[i]; // Get index of nfa state engine

            // - If index points to character type state, store index to states.
            // - If index points to Empty/Split, then add all vector elements to current_states; if state out is Repeat(o, m, n, c) then
            //     (where o - nfa engine vec index, m - min repeat count, n - max repeat count, c - current repeat count)
            //   + If c < m, then only add index o from Empty/Split vector.
            //   + If c >= m and c < n, then add index o and other index from Empty/Split vector.
            //   + If c >= n, then skip index o and add every other Out index from Empty/Split vector.
            match &mut self.nfa_engine[idx] {
                AnyChar(_) | Char(_, _) | NotChar(_, _) | Range(_, _, _) | Match => if !states.contains(&idx) { states.push(idx); }
                EmptySplit(v) => {
                    let mut get_other_outs = true;
                    let repeat = v.into_iter()
                        .find_map(|e| {
                            match e { Repeat(_, _, _, _) => Some(e), _ => None }
                        })
                        .and_then(|r| {
                            // Increment the count and verify that if it is less than m, then strict repeat, if less than n then loose repeat, otherwise skip this repeat.
                            match r {
                                Repeat(o, m, n, c) => {
                                    *c += 1;
                                    if *c < *m { get_other_outs = false; Some(*o) }
                                    else if *c >= *m && *c < *n { get_other_outs = true; Some(*o) }
                                    else { get_other_outs = true; None } // We must reset *c if entire match operation fails
                                }
                                _ => { get_other_outs = true; None }
                            }
                        });
                    
                    // If we have the repeat index, do push it in current states
                    if let Some(ro) = repeat {
                        if !current_states.contains(&ro) {
                            current_states.push(ro);
                        }
                    }
                    // If repeat is optional or there is no repeat then, add all out states
                    if get_other_outs {
                        v.iter().for_each(|o| { if let Out(ao) = o {
                            if !current_states.contains(ao) { current_states.push(*ao); }
                        }});
                    }
                    size = current_states.len();
                }
                Start(o) => {
                    // Just append start's out into current states to be searched for character states.
                    if !current_states.contains(o) { current_states.push(*o); }
                    size += 1;
                }
                _ => ()
            }
            i += 1;
        }
    }

    /// Matches given character to character states of nfa state engine for given indices. Returns true if match
    /// if found, false otherwise. Updates the input list of state indices.
    fn match_char(&self, c: char, states: &mut Vec<usize>) -> bool {
        use State::*;

        let mut match_found = false; // True if match state if found, false otherwise
        let current_states = states.clone(); // Clone list of state index values to current temporary state
        let mut next_index: Option<usize> = None; // Temporary storage for next index
        states.clear();

        for si in current_states.iter() {
            // If character state, get its next index. If match state, set the related flag.
            match &self.nfa_engine[*si] {
                AnyChar(o) => if c >= ' ' || c <= '~' { next_index = Some(*o); }
                Char(ch, o) => if c == *ch { next_index = Some(*o); }
                NotChar(ch, o) => if c != *ch { next_index = Some(*o); }
                Range(b, e, o) => if c >= *b && c <= *e  { next_index = Some(*o); }
                Match => match_found = true,
                _ => return false // Any other state is not allowed while character check, its an error, return false
            }

            if let Some(idx) = next_index {
                if !states.contains(&idx) { states.push(idx); }
            }
        }

        match_found
    }

    /// Creates new regex engine given the infix regex pattern.
    /// 
    /// # Errors
    /// Returns descriptive error message string in case of failure which are categorized as:
    /// 1. Syntax Error: Syntax error in the regex pattern.
    ///                  E.g. [[ab]]] (Syntax Error: Nested square brackets '[]' not allowed.)
    /// 2. Parse Error:  Error occured during parsing the postfix regex expression.
    ///                  E.g. [ab]+? (Parse Error: Cannot apply repeat or duplication operator twice.)
    /// 
    /// # Examples
    /// ```
    /// let mut r = nfa_regex::Regex::new("[a-z]").unwrap();
    /// assert_eq!(r.match_pattern("a"), true);
    /// ```
    pub fn new(pattern: &str) -> Result<Self, &'static str> {
        if pattern.is_empty() { return Err("Syntax Error: Input infix pattern string is empty."); }
        let postfix = Regex::infix_to_postfix(pattern)?;
        // println!("{}", Regex::_print_postfix(pattern, &postfix));
        let nfa = Regex::postfix_to_nfa(postfix)?;
        // println!("{}", nfa._print_nfa_engine());
        Ok(nfa)
    }

    /// Matches input string to NFA regex pattern. Returns true if complete string matches the pattern, false otherwise.
    ///
    /// # Examples
    /// ```
    /// let mut r = nfa_regex::Regex::new("[a-z]+").unwrap();
    /// assert_eq!(r.match_pattern("ashutosh"), true);
    /// assert_eq!(r.match_pattern("[om, ashutosh]"), false);
    /// assert_eq!(r.match_pattern(""), false);
    /// ```
    pub fn match_pattern(&mut self, s: &str) -> bool {
        self.clear_repeat_out_counter(); // Clear any count values inside repeat outs of empty/split state
        let mut states = vec![self.start]; // Start fresh with start state
        let mut match_found = false; // True if match state is found, false otherwise
        for c in s.chars() {
            self.get_next_states(&mut states);
            match_found = self.match_char(c, &mut states);
            if states.is_empty() {
                // If state is empty, it means the input string does not match perfectly to our regex pattern
                match_found = false;
                break;
            }
        }
        if !states.is_empty() {
            // If states available to check, then only check for match state as we already matched all characters in input string to pattern and they are perfect match till now.
            self.get_next_states(&mut states);
            match_found = states.iter().any(|i| { &self.nfa_engine[*i] == &State::Match });
        }

        match_found
    }
    
    /// Searches the pattern inside string and returns the first match's begin and end index into the input string, otherwise returns begin and end index as 0.
    ///
    /// # Examples
    /// ```
    /// let mut r = nfa_regex::Regex::new("[a-z]+").unwrap();
    /// assert_eq!(r.search_pattern_and_get_index("ashutosh"), (0, 8));
    /// assert_eq!(r.search_pattern_and_get_index("[om, ashutosh, 3.141593]"), (1, 3));
    /// assert_eq!(r.search_pattern_and_get_index(""), (0, 0));
    /// ```
    pub fn search_pattern_and_get_index(&mut self, s: &str) -> (usize, usize) {
        self.clear_repeat_out_counter(); // Clear any count values inside repeat outs of empty/split state
        let mut c: char; // Char of input string
        let mut states = vec![self.start]; // Start from start state
        let mut match_begin = None; // The begin index of pattern match
        let mut match_end = None; // The end index of pattern match
        let mut match_found = false; // True if match state is found, false otherwise
        let mut i = 0; // Index into input string
        // In case pattern match fails but string is still not completely searched for, then restart the search from begin + 1 index since begin index character was already checked and failed.
        while i < s.len() {
            c = s.chars().nth(i).unwrap();
            self.get_next_states(&mut states);
            match_found = self.match_char(c, &mut states);
            if states.is_empty() {
                // If state indices is empty, then if match found and we have valid match begin, then get current index into string as end index.
                // Otherwise, restart search from index begin + 1, since search from begin index already failed, so restart from its next character all over again
                if match_found && match_begin != None {
                    match_end = Some(i);
                    break;
                } else {
                    if let Some(k) = match_begin {
                        // Not incrementing here as we already have increment at the end of loop to begin search from begin + 1.
                        i = k;
                    }
                    match_begin = None;
                    match_end = None;
                    states.push(self.start);
                }
            } else {
                // If we have states, then its a match of first character, use current index as begin index
                if match_begin == None {
                    match_begin = Some(i);
                }
            }
            i += 1;
        }

        // If match not found, then
        if !match_found {
            // And next states is empty
            if states.is_empty() {
                // Reset match indices
                match_begin = None;
                match_end = None;
            } else {
                // Otherwise, get next states, and try to find match state.
                self.get_next_states(&mut states);
                // If found, break and return matched sub-string.
                for i in states {
                    match &self.nfa_engine[i] {
                        State::Match => { match_end = Some(s.len()); break; }
                        _ => ()
                    }
                }
            }
        } else {
            // Match state found, match pattern begin index is valid, then we have last character as match pattern end.
            if match_begin != None && match_end == None {
                match_end = Some(s.len());
            }
        }

        // We have valid begin and end matched pattern indices, then get and return prefix, suffix and macthed string slices.
        if let (Some(begin), Some(end)) = (match_begin, match_end) {
            if begin < end && end <= s.len() {
                return (begin, end);
            }
        }

        (0, 0)
    }

    /// Search the substring inside given string which matches the regex pattern and return unmatched prefix, matched and unmatched suffix string slices.
    ///
    /// # Examples
    /// ```
    /// let mut r = nfa_regex::Regex::new("[a-z]+").unwrap();
    /// assert_eq!(r.search_pattern_and_get_slice("ashutosh"), ("", "ashutosh", ""));
    /// assert_eq!(r.search_pattern_and_get_slice("[om, ashutosh, 3.141593]"), ("[", "om", ", ashutosh, 3.141593]"));
    /// assert_eq!(r.search_pattern_and_get_slice(""), ("", "", ""));
    /// ```
    pub fn search_pattern_and_get_slice<'a>(&mut self, s: &'a str) -> (&'a str, &'a str, &'a str) {
        let (begin, end) = self.search_pattern_and_get_index(s);
        (&s[0..begin], &s[begin..end], &s[end..])
    }

    /// Search all substrings inside given string which matches regex pattern. Return the list of begin-end indices for input string of all matched pattern.
    ///
    /// # Examples
    /// ```
    /// let mut r = nfa_regex::Regex::new("[a-z]+").unwrap();
    /// assert_eq!(r.search_all_patterns_and_get_index_list("ashutosh"), vec![(0, 8)]);
    /// assert_eq!(r.search_all_patterns_and_get_index_list("[om, ashutosh, 3.141593]"), vec![(1, 3), (5, 13)]);
    /// assert_eq!(r.search_all_patterns_and_get_index_list(""), vec![]);
    /// ```
    pub fn search_all_patterns_and_get_index_list(&mut self, s: &str) -> Vec<(usize, usize)> {
        let mut index_list: Vec<(usize, usize)> = vec![];
        let mut end = 0;
        // Every time we get the substring match, we strip the string slice begging till match end index, hence using end index to accumulate all end index values so always get current index into input string.
        loop {
            let (b, e) = self.search_pattern_and_get_index(&s[end..]); // Get begin and end index.
            if (b == 0 && e == 0) || end >= s.len() { break; } // Make sure they are valid
            index_list.push((b + end, e + end)); // Push these indices to vector
            end += e; // Update end index with input e index.
        }
        index_list
    }

    /// Replace the occurance of first match of regex pattern to substring inside given input string with another given source string.
    ///
    /// # Examples
    /// ```
    /// let mut r = nfa_regex::Regex::new("[a-z]+").unwrap();
    /// let mut s1 = String::from("ashutosh");
    /// let mut s2 = String::from("[om, ashutosh, 3.141593]");
    /// r.replace_pattern(&mut s1, "MAHAKALI");
    /// r.replace_pattern(&mut s2, "MAHAKALI");
    /// assert_eq!(s1, "MAHAKALI");
    /// assert_eq!(s2, "[MAHAKALI, ashutosh, 3.141593]");
    /// ```
    pub fn replace_pattern(&mut self, target: &mut String, src: &str) {
        let (begin, end) = self.search_pattern_and_get_index(target);
        if begin < end && end <= target.len() {
            target.replace_range(begin..end, src);
        }
    }

    /// Replaces all occurances of substring matching regex pattern inside given input string with given source string.
    /// Returns unchanged string if no matched substring found.
    ///
    /// # Examples
    /// ```
    /// let mut r = nfa_regex::Regex::new("[a-z]+").unwrap();
    /// let mut s = String::from("[om, ashutosh, 3.141593]");
    /// r.replace_all_patterns(&mut s, "MAHAKALI");
    /// assert_eq!(s, "[MAHAKALI, MAHAKALI, 3.141593]");
    /// ```
    pub fn replace_all_patterns(&mut self, target: &mut String, src: &str) {
        let i = self.search_all_patterns_and_get_index_list(target);
        i.into_iter().rev().for_each(|(b, e)| { target.replace_range(b..e, src); } );
    }
}


#[cfg(test)]
mod tests {
    use crate::Regex;
    #[test]
    fn regex_function_test() {
        let mut r = Regex::new("[a-z]+").unwrap();
        assert_eq!(r.match_pattern("ashutosh"), true);
        assert_eq!(r.match_pattern(""), false);

        // A regex pattern for real number types
        let mut r = Regex::new("[\\+\\-]?[0-9]+(\\.[0-9]+)?([eE][\\+\\-]?[0-9]+)?").unwrap();
        assert_eq!(r.match_pattern("-0.223654E-9"), true);
        assert_eq!(r.search_pattern_and_get_index(""), (0, 0));
        assert_eq!(r.search_pattern_and_get_slice(""), ("", "", ""));
        assert_eq!(r.search_pattern_and_get_slice("a = 0.2232+3.2i"), ("a = ", "0.2232", "+3.2i"));
        assert_eq!(r.search_pattern_and_get_index("Income tax slab of 30.5%."), (19, 23));
        assert_eq!(r.search_all_patterns_and_get_index_list("pi = 3.141593, x = -2.12e-10"), vec![(5, 13), (19, 28)]);

        let mut s = String::from("A picture worth 1000 words.");
        r.replace_pattern(&mut s, "some");
        assert_eq!(s, "A picture worth some words.");
        r.replace_pattern(&mut s, "src");
        assert_eq!(s, "A picture worth some words.");

        s = String::from("pi = 3.141593, x = -2.12e-10, DONE.");
        r.replace_all_patterns(&mut s, "Some Number");
        assert_eq!(s, "pi = Some Number, x = Some Number, DONE.");

        let mut r = Regex::new("[a#b]+").unwrap();
        assert_eq!(r.match_pattern("#b"), true);
    }
}