1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
/// Returns the ceiling of the square root of an unsigned integer in a
/// timely manner, using binary search.  
/// Time complexity: O(log(n))
fn usqrt(n: u64) -> u64 {
    let (mut low, mut high) = (1, n);
    let mut mid = (low + high) / 2;
    while low < high {
        mid = (low + high) / 2;
        let square = mid * mid;
        if square == n {
            return mid;
        } else if square > n {
            high = mid - 1
        } else {
            low = mid + 1
        }
    }
    if mid * mid == n {
        mid
    } else {
        high
    }
}

#[cfg(test)]
mod usqrt_tests {
    use super::usqrt;

    #[test]
    fn small_perfect_squares() {
        let inputs = (1..11).collect::<Vec<u64>>();
        let squares = inputs.iter().map(|x| x * x).collect::<Vec<u64>>();
        let outputs = squares.into_iter().map(usqrt).collect::<Vec<u64>>();
        assert_eq!(inputs, outputs);
    }

    #[test]
    fn large_perfect_squares() {
        let inputs = (1000..10000).step_by(37).collect::<Vec<u64>>();
        let squares = inputs.iter().map(|x| x * x).collect::<Vec<u64>>();
        let outputs = squares.into_iter().map(usqrt).collect::<Vec<u64>>();
        assert_eq!(inputs, outputs);
    }

    #[test]
    fn edge_case_zero() {
        assert_eq!(usqrt(0), 0);
    }

    #[test]
    fn edge_case_one() {
        assert_eq!(usqrt(1), 1);
    }

    #[test]
    fn rounds_up_when_not_a_perfect_square() {
        assert_eq!(usqrt(2), 2);
    }

    #[test]
    fn large_not_perfect_square() {
        let x = 12345;
        assert_eq!(usqrt(x * x + 1), x + 1)
    }
}

/// Determines whether a number is prime or not.  
/// Time complexity: O(sqrt(n))
fn is_prime(n: u64) -> bool {
    if n == 2 || n == 3 {
        return true;
    }
    if n % 2 == 0 || n <= 1 {
        return false;
    }
    let lower = 3;
    let upper = usqrt(n);
    (lower..(upper + 1))
        .step_by(2)
        .all(|maybe_divisor| n % maybe_divisor != 0)
}

#[cfg(test)]
mod is_prime_tests {
    use super::is_prime;

    #[test]
    fn small_primes() {
        let primes = vec![2, 3, 5, 7, 11, 13, 17, 19, 23];
        assert_eq!(
            primes
                .clone()
                .into_iter()
                .map(is_prime)
                .collect::<Vec<bool>>(),
            vec![true; primes.len()]
        );
    }
}

/// Finds the next prime number >= n.  
/// Time complexity: *expected* O(sqrt(n))
/// # Examples
/// ```
/// use next_prime::next_prime;
/// assert_eq!(next_prime(2), 2);
/// assert_eq!(next_prime(4), 5);
/// ```
pub fn next_prime(mut n: u64) -> u64 {
    if n <= 2 {
        return 2;
    }
    if n % 2 == 0 {
        n += 1;
    }
    while !is_prime(n) {
        n += 2;
    }
    n
}

#[cfg(test)]
mod next_prime_tests {
    use super::next_prime;

    #[test]
    fn edge_case_two() {
        assert_eq!(next_prime(2), 2);
    }

    #[test]
    fn finds_small_primes() {
        let primes = vec![5, 7, 11, 13, 17, 19, 23, 29];
        assert_eq!(
            primes,
            primes
                .iter()
                .map(|x| next_prime(x - 1))
                .collect::<Vec<u64>>()
        );
    }

    #[test]
    fn returns_argument_when_it_is_already_prime() {
        assert_eq!(next_prime(101), 101);
    }

    #[test]
    fn finds_a_very_large_prime() {
        assert_eq!(next_prime(472_888_178), 472_888_217)
    }
}