1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
/*
 * Copyright (c) 2019. David "Tiran'Sol" Soria Parra
 * All rights reserved.
 */
use rstar;
use std::collections::HashMap;

/// Describes the ID of a solar system. Can be casted to from i32 or u32 using .into()
///
/// # Example
/// ```
/// use neweden::SystemId;
///
/// let system_id: SystemId = 30000142.into(); // returns a SystemId
/// assert_eq!(system_id, SystemId(30000142));
/// ```
#[derive(Debug, Copy, Clone, PartialEq, PartialOrd, Eq, Hash)]
pub struct SystemId(pub u32);

impl From<u32> for SystemId {
    fn from(other: u32) -> Self {
        SystemId(other)
    }
}

impl From<i32> for SystemId {
    fn from(other: i32) -> Self {
        SystemId(other as u32)
    }
}

/// Describes a security rating. A security rating is between -1.0 and 1.0.
#[derive(Debug, Copy, Clone, PartialOrd, PartialEq)]
pub struct Security(pub f32); // TODO Bound check

impl From<f32> for Security {
    fn from(other: f32) -> Self {
        Security(other)
    }
}

/// Describes if a system's security rating is considered Highsec, Lowsec or Nullsec.
/// In Eve Online, 1.0 t 0.45 is considered highsec. 0.0 to 0.45 is considered lowsec,
/// and below 0.0 is considered nullsec.
///
/// A security instance can be converted into a SecurityClass.
///
/// # Example
/// ```
/// use neweden::{Security, SecurityClass};
/// let s1 = Security(0.443);
/// let sc1: SecurityClass = s1.into();
/// assert_eq!(sc1, SecurityClass::Lowsec);
/// let s2 = Security(-0.24);
/// assert_eq!(SecurityClass::from(s2), SecurityClass::Nullsec);
/// let s3 = Security(0.74);
/// assert_eq!(SecurityClass::from(s3), SecurityClass::Highsec);
/// ```
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum SecurityClass {
    Highsec,
    Lowsec,
    Nullsec,
}

impl From<&Security> for SecurityClass {
    fn from(other: &Security) -> Self {
        let sec = (other.0 * 10.0).round() / 10.0;
        if sec < 0.0 {
            Self::Nullsec
        } else if sec < 0.5 {
            Self::Lowsec
        } else {
            Self::Highsec
        }
    }
}

impl From<Security> for SecurityClass {
    fn from(other: Security) -> Self {
        let sec = (other.0 * 10.0).round() / 10.0;
        if sec < 0.0 {
            Self::Nullsec
        } else if sec < 0.5 {
            Self::Lowsec
        } else {
            Self::Highsec
        }
    }
}

/// Defines a connection between two systems.
#[derive(Debug, Clone)]
pub struct Connection {
    pub from: SystemId,
    pub to: SystemId,
    pub type_: ConnectionType,
}

/// The type of connection between two systems.
/// Can be a bridge, a stargate or a wormhole.
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum ConnectionType {
    Stargate(StargateType),
    Bridge(BridgeType),
    Wormhole(WormholeType),
}

/// The type of bridge. Can be either a titan bridge
/// or a blackops bridge. Provides information about the
/// skill-level used. You can calculate the bridge distance
/// using an `Into` conversion, similar to `JumpdriveShip`.
///
/// # Example
/// ```
/// use neweden::{BridgeType, Lightyears, JumpdriveSkills};
///
/// let titan = BridgeType::Titan(JumpdriveSkills::new(4, 5));
/// let ly: Lightyears = titan.into();
/// println!("titan's bridge range with JDC4 is {:?}", ly);
/// ```
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum BridgeType {
    // TODO: introduce a type JumpDrive
    Titan(JumpdriveSkills), // jump drive calibration, jump fuel conservation
    BlackOps(JumpdriveSkills), // jump drive calibration, jump fuel conservation
}

impl std::convert::Into<Lightyears> for BridgeType {
    fn into(self) -> Lightyears {
        match self {
            Self::BlackOps(skills) => skills.range_from_base(Lightyears(4.0)),
            Self::Titan(skills) => skills.range_from_base(Lightyears(3.0)),
        }
    }
}

#[derive(Debug, Clone, PartialEq, Eq)]
pub struct JumpdriveSkills {
    jump_drive_calibration: u8,
    fuel_conversation: u8,
}

impl JumpdriveSkills {
    pub fn new(jump_drive_calibration: u8, fuel_conversation: u8) -> Self {
        Self {
            jump_drive_calibration,
            fuel_conversation,
        }
    }

    pub fn range_from_base(&self, ly: Lightyears) -> Lightyears {
        let jdc = f64::from(self.jump_drive_calibration);
        ly + (ly * 0.2 * jdc)
    }
}

/// Conversion for jumpdrive capable ships.
/// You can get the jumprange of a ship through Into conversion.
///
/// # Example
/// ```
/// use neweden::{JumpdriveShip, Lightyears, JumpdriveSkills};
///
/// let titan = JumpdriveShip::Titan(JumpdriveSkills::new(5, 5));
/// let ly: Lightyears = titan.into();
/// println!("titan's jump range with JDC5 is {:?}", ly);
/// ```
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum JumpdriveShip {
    BlackOps(JumpdriveSkills),
    CapitalIndustrial(JumpdriveSkills),
    Carrier(JumpdriveSkills),
    Dreadnought(JumpdriveSkills),
    ForceAuxiliary(JumpdriveSkills),
    Jumpfreighter(JumpdriveSkills),
    Supercarrier(JumpdriveSkills),
    Titan(JumpdriveSkills),
}

impl std::convert::Into<Lightyears> for JumpdriveShip {
    fn into(self) -> Lightyears {
        match self {
            Self::BlackOps(skills) => skills.range_from_base(Lightyears(4.0)),
            Self::CapitalIndustrial(skills) => skills.range_from_base(Lightyears(5.0)),
            Self::Carrier(skills) => skills.range_from_base(Lightyears(3.5)),
            Self::Dreadnought(skills) => skills.range_from_base(Lightyears(3.5)),
            Self::ForceAuxiliary(skills) => skills.range_from_base(Lightyears(3.5)),
            Self::Jumpfreighter(skills) => skills.range_from_base(Lightyears(5.0)),
            Self::Supercarrier(skills) => skills.range_from_base(Lightyears(3.0)),
            Self::Titan(skills) => skills.range_from_base(Lightyears(3.0)),
        }
    }
}

impl std::convert::Into<Meters> for JumpdriveShip {
    fn into(self) -> Meters {
        let ly: Lightyears = self.into();
        Meters::from(ly)
    }
}

/// Information about a stargate.
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum StargateType {
    Local,
    Constellation,
    Regional,
}

/// Information about a wormhole.
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum WormholeType {
    VeryLarge, // everything, except supers+
    Large,     // battleships
    Medium,    // battlecruisers, etc
    Small,     // frigates, etc
    Unknown,
}

/// Defines a system class. A system is either part of
/// the known space (SystemClass::KSpace) or wormhole space
/// (SystemClass::WSpace).
///
/// A System reference can be casted into this.
/// # Example
/// ```
/// use neweden::{System, Coordinate, SystemClass};
/// let jita = System {
///     id: 30000142.into(),
///     name: "Jita".to_string(),
///     coordinate: Coordinate {
///         x: -1.2906e+17_f64,
///         y: 6.07553e+16_f64,
///         z: 1.17469e+17_f64,
///     },
///     security: 0.9459.into(),
/// };
/// assert_eq!(SystemClass::from(&jita), SystemClass::KSpace);
/// ```
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum SystemClass {
    KSpace,
    WSpace,
}

impl From<System> for SystemClass {
    fn from(s: System) -> Self {
        match s.id {
            SystemId(0..=30999999) => Self::KSpace,
            SystemId(31000000..=31999999) => Self::WSpace,
            _ => panic!("unknown space."),
        }
    }
}

impl From<&System> for SystemClass {
    fn from(s: &System) -> Self {
        match s.id {
            SystemId(0..=30999999) => Self::KSpace,
            SystemId(31000000..=31999999) => Self::WSpace,
            _ => panic!("unknown space."),
        }
    }
}

/// Describes the coordinate of a system in Eve Online.
#[derive(Debug, Clone)]
pub struct Coordinate {
    pub x: f64,
    pub y: f64,
    pub z: f64,
}

/// Describe a system.
#[derive(Debug, Clone)]
pub struct System {
    // The ID of a system. Coorespondes to the field mapSolarSystems.solarSystemID in the SDE.
    pub id: SystemId,
    // The name of a system. Coorespondes to the field mapSolarSystems.solarSystemName in the SDE.
    pub name: String,
    // The coordinate of a the system in the universe.
    pub coordinate: Coordinate,
    // The security rating of the system.
    pub security: Security,
}

impl std::cmp::Eq for System {}
impl std::cmp::PartialEq for System {
    fn eq(&self, other: &Self) -> bool {
        self.id == other.id
    }
}

impl std::hash::Hash for System {
    fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
        self.id.hash(state);
    }
}

#[derive(Debug)]
struct Celestial {}

#[derive(Debug)]
pub struct SystemMap(pub(crate) HashMap<SystemId, System>);

impl SystemMap {
    pub fn empty() -> Self {
        Self(HashMap::new())
    }
    pub fn get(&self, k: &SystemId) -> Option<&System> {
        self.0.get(k)
    }
}

impl From<Vec<System>> for SystemMap {
    fn from(systems: Vec<System>) -> Self {
        let mut system_map = HashMap::new();
        for system in systems {
            system_map.insert(system.id, system);
        }

        Self(system_map)
    }
}

#[derive(Debug)]
pub struct AdjacentMap(pub(crate) HashMap<SystemId, Vec<Connection>>);

impl AdjacentMap {
    pub fn empty() -> Self {
        Self(HashMap::new())
    }
}
impl From<Vec<Connection>> for AdjacentMap {
    fn from(connections: Vec<Connection>) -> Self {
        let mut adjacent_map = HashMap::new();
        for connection in connections {
            adjacent_map
                .entry(connection.from)
                .or_insert_with(Vec::new)
                .push(connection);
        }

        Self(adjacent_map)
    }
}

// TODO: Implement conversions between those

#[derive(Debug, PartialOrd, PartialEq, Copy, Clone)]
pub struct Lightyears(pub f64);
impl From<Lightyears> for Meters {
    fn from(other: Lightyears) -> Self {
        const LY_IN_KM: f64 = 9_460_730_472_580.8;
        Meters(other.0 * LY_IN_KM * 1_000.0)
    }
}

impl std::ops::Add for Lightyears {
    type Output = Self;

    fn add(self, rhs: Self) -> Self::Output {
        Lightyears(self.0 + rhs.0)
    }
}

impl std::ops::Mul for Lightyears {
    type Output = Self;

    fn mul(self, rhs: Self) -> Self::Output {
        Lightyears(self.0 * rhs.0)
    }
}

impl std::ops::Mul<f64> for Lightyears {
    type Output = Self;

    fn mul(self, rhs: f64) -> Self::Output {
        Lightyears(self.0 * rhs)
    }
}

#[derive(Debug, PartialOrd, PartialEq, Copy, Clone)]
pub struct Au(pub f64);
impl From<Au> for Meters {
    fn from(other: Au) -> Self {
        const AU_TO_KM: f64 = 149_597_871.0;
        Meters(other.0 * AU_TO_KM * 1_000.0)
    }
}

#[derive(Debug, PartialOrd, PartialEq, Copy, Clone)]
pub struct Kilometers(pub f64);
impl From<Kilometers> for Meters {
    fn from(other: Kilometers) -> Self {
        Meters(other.0 * 1_000.0)
    }
}

#[derive(Debug, PartialOrd, PartialEq, Copy, Clone)]
pub struct Meters(pub f64);

/// Describes universes that are navigatable. Only navigatable universes can be used
/// for pathfinding. Two main implementation exists: `Universe` and `ExtendedUniverse`.
pub trait Navigatable {
    fn get_system<'a>(&self, id: &SystemId) -> Option<&System>;
    fn get_connections<'a>(&self, from: &SystemId) -> Option<Vec<Connection>>;
    fn get_systems_by_range<'a>(&self, from: &SystemId, range: Meters) -> Option<Vec<&System>>;
}

pub trait Galaxy {
    fn connections(&self) -> Vec<(SystemId, SystemId)>;
    fn systems(&self) -> Vec<&System>;
}

/// Describes the known systesms and their connections in new eden universe.
/// `Universe` implements `Navigatable` and can be used in pathfinding.
///
/// `Universe` is intended to be used immutable and can only be instantiated
/// from a data source such as a database. If you need to add additional connections,
/// such as dynamic wormhole connections during pathfinding, construct an `ExtendedUniverse`
/// from a universe by calling `.extend()` or `ExtendedUniverse::new()`.
///
/// # Example
/// ```
/// use std::env;
/// use neweden::source::sqlite::DatabaseBuilder;
/// use neweden::Navigatable;
///
/// let uri = std::env::var("SQLITE_URI").unwrap();
/// let universe = DatabaseBuilder::new(&uri).build().unwrap();
/// let system_id = 30000142.into(); // returns a SystemId
///
/// println!("{:?}", universe.get_system(&system_id).unwrap().name); // Jita
/// ```
#[derive(Debug)]
pub struct Universe {
    pub(crate) systems: SystemMap,
    pub(crate) connections: AdjacentMap,
    pub(crate) rtree: rstar::RTree<System>,
}

impl System {
    fn to_point(&self) -> [f64; 3] {
        [self.coordinate.x, self.coordinate.y, self.coordinate.z]
    }

    fn point_distance(&self, point: &[f64; 3]) -> Meters {
        let d_x = self.coordinate.x - point[0];
        let d_y = self.coordinate.y - point[1];
        let d_z = self.coordinate.z - point[2];
        let distance = (d_x * d_x + d_y * d_y + d_z * d_z).sqrt();
        // We must return the squared distance!
        Meters(distance)
    }

    pub fn distance(&self, other: &System) -> Meters {
        self.point_distance(&other.to_point())
    }
}

impl rstar::RTreeObject for System {
    type Envelope = rstar::AABB<[f64; 3]>;

    fn envelope(&self) -> Self::Envelope {
        rstar::AABB::from_point(self.to_point())
    }
}

impl rstar::PointDistance for System {
    fn distance_2(&self, point: &[f64; 3]) -> f64 {
        let d_x = self.coordinate.x - point[0];
        let d_y = self.coordinate.y - point[1];
        let d_z = self.coordinate.z - point[2];
        let distance = (d_x * d_x + d_y * d_y + d_z * d_z).sqrt();
        // We must return the squared distance!
        distance * distance
    }
}

impl Universe {
    /// Create an empty universe with no systems or connections. This can be useful
    /// as a placeholder, or to extend your own universe using `ExtendedUniverse`.
    pub fn empty() -> Self {
        Self {
            systems: SystemMap(HashMap::new()),
            connections: AdjacentMap(HashMap::new()),
            rtree: rstar::RTree::new(),
        }
    }

    /// Create a new universe. This is internal to the crate as only a data source
    /// is allowed to create it.
    pub(crate) fn new(systems: SystemMap, connections: AdjacentMap) -> Self {
        // TODO: Remove the clone and use references into the map if possible
        let spatial_data = systems.0.values().map(|s| s.clone()).collect::<Vec<_>>();

        Self {
            systems,
            connections,
            rtree: rstar::RTree::bulk_load(spatial_data),
        }
    }

    /// Extend the universe with new connections. This is useful to add additional
    /// connection, for example wormholes and find paths. The extended universe will
    /// reuse the systems from the existing universe and only take space for new connections.
    pub fn extend(&self, connections: AdjacentMap) -> ExtendedUniverse<Self> {
        ExtendedUniverse::new(self, connections)
    }
}

impl Galaxy for Universe {
    fn systems(&self) -> Vec<&System> {
        self.systems.0.values().collect::<Vec<&System>>()
    }

    fn connections(&self) -> Vec<(SystemId, SystemId)> {
        let mut connections = Vec::new();
        for adjacent in self.connections.0.values() {
            for conn in adjacent {
                connections.push((conn.from, conn.to))
            }
        }
        connections
    }
}

impl Navigatable for Universe {
    fn get_system<'a>(&self, id: &SystemId) -> Option<&System> {
        self.systems.0.get(id)
    }

    fn get_connections<'a>(&self, from: &SystemId) -> Option<Vec<Connection>> {
        self.connections.0.get(from).map(|v| v.clone())
    }

    fn get_systems_by_range<'a>(&self, from: &SystemId, range: Meters) -> Option<Vec<&System>> {
        // it is very important that we use KM, since all distances in the database are in KM, because CCP.
        let system = self.get_system(from)?;
        let systems = self
            .rtree
            .locate_within_distance(system.to_point(), range.0 * range.0)
            .filter(|s| match SecurityClass::from(s.security) {
                SecurityClass::Lowsec | SecurityClass::Nullsec => true,
                SecurityClass::Highsec => false,
            })
            .collect::<Vec<_>>();
        Some(systems)
    }
}

/// Extends the universe with dynamic connections. This is intended to be used
/// to allow pathfinding through wormholes and titan bridges.
///
/// # Example
/// ```
/// use std::env;
/// use neweden::source::sqlite::DatabaseBuilder;
/// use neweden::navigation::PathBuilder;
/// use neweden::Navigatable;
/// use neweden::{Connection, ConnectionType, WormholeType};
///
/// let uri = std::env::var("SQLITE_URI").unwrap();
/// let wormholes = vec![Connection {
///     from: 30002718.into(), // Rancer
///     to: 30000049.into(),  // Camal
///     type_: ConnectionType::Wormhole(WormholeType::VeryLarge),
/// }];
/// let universe = DatabaseBuilder::new(&uri).build().unwrap();
/// let extended = universe.extend(wormholes.into()); // make into an adjacent map and pass into extend()
/// let path = PathBuilder::new(&extended)
///     .waypoint(extended.get_system(&30002718.into()).unwrap()) // from Rancer
///     .waypoint(extended.get_system(&30000049.into()).unwrap()) // to Camal
///     .build() // returns an iterator
///     .collect::<Vec<_>>();
/// assert_eq!(2, path.len()); // direct jump through our wormhole
/// ```
#[derive(Debug)]
pub struct ExtendedUniverse<'a, U> {
    pub(crate) universe: &'a U,
    pub(crate) connections: AdjacentMap,
}

impl<'a, U: Galaxy + Navigatable> ExtendedUniverse<'a, U> {
    pub fn new(universe: &'a U, connections: AdjacentMap) -> Self {
        Self {
            universe,
            connections,
        }
    }
}
impl<'a, U: Galaxy> Galaxy for ExtendedUniverse<'a, U> {
    fn systems(&self) -> Vec<&System> {
        self.universe.systems()
    }

    fn connections(&self) -> Vec<(SystemId, SystemId)> {
        let mut connections = Vec::new();
        for (from, to) in self.universe.connections() {
            connections.push((from, to));
        }
        for adjacent in self.connections.0.values() {
            for conn in adjacent {
                connections.push((conn.from, conn.to))
            }
        }
        connections
    }
}

impl<'b, U: Navigatable> Navigatable for ExtendedUniverse<'b, U> {
    fn get_system<'a>(&self, id: &SystemId) -> Option<&System> {
        self.universe.get_system(id)
    }

    fn get_connections<'a>(&self, from: &SystemId) -> Option<Vec<Connection>> {
        // TODO: This is highly unoptimal
        let a = self.universe.get_connections(from);
        let b = self.connections.0.get(&from);
        match (a, b) {
            (Some(a), Some(b)) => {
                let mut v = a.clone();
                v.append(&mut b.clone());
                Some(v)
            }
            (Some(a), None) => Some(a.to_vec()),
            (None, Some(b)) => Some(b.to_vec()),
            (None, None) => None,
        }
    }

    fn get_systems_by_range<'a>(&self, from: &SystemId, range: Meters) -> Option<Vec<&System>> {
        self.universe.get_systems_by_range(from, range)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_ship_range_calculation() {
        let ly = JumpdriveShip::Titan(JumpdriveSkills::new(5, 1)).into();
        assert_eq!(Lightyears(6.0), ly);
    }
}

#[cfg(all(test, feature = "sqlite"))]
mod dbtests {
    use std::env;

    use crate::rules;
    use crate::source::sqlite::DatabaseBuilder;

    use super::*;

    extern crate test;

    #[test]
    fn test_range_query() {
        let uri = env::var("SQLITE_URI").expect("expected env variable DATABASE_URL set");
        let universe = DatabaseBuilder::new(&uri).build().unwrap();
        let camal_id = 30000049.into();
        // let faspera_id = 30000044.into();
        let systems = universe
            .get_systems_by_range(&camal_id, Lightyears(7.0).into())
            .unwrap();
        let jumpable = systems
            .into_iter()
            .filter(|x| rules::allows_cynos(x))
            .collect::<Vec<_>>();
        assert_eq!(115, jumpable.len());
    }

    #[bench]
    fn bench_range_query(b: &mut test::Bencher) {
        let uri = env::var("SQLITE_URI").expect("expected env variable DATABASE_URL set");
        let universe = DatabaseBuilder::new(&uri).build().unwrap();
        let camal_id: SystemId = 30000049.into();
        // let faspera_id = 30000044.into();
        b.iter(move || {
            test::black_box(universe.get_systems_by_range(&camal_id, Lightyears(7.0).into()));
        });
        // let jumpable = systems.into_iter().filter(|x| rules::allows_cynos(x)).collect::<Vec<_>>();
        // assert_eq!(115, jumpable.len());
    }
}