1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
//! NeuroFlow is neural networks (and deep learning of course) Rust crate.
//! It relies on three pillars: speed, reliability, and speed again.
//!
//! Let's better check some examples.
//!
//! # Examples
//!
//! Here we are going to approximate very simple function `0.5*sin(e^x) - cos(e^(-x))`.
//!
//! ```rust
//!
//! use neuroflow::FeedForward;
//! use neuroflow::data::DataSet;
//! use neuroflow::activators::Type::Tanh;
//!
//!
//!  /*
//!      Define neural network with 1 neuron in input layers. Network contains 4 hidden layers.
//!      And, such as our function returns single value, it is reasonable to have 1 neuron in
//!      the output layer.
//!  */
//!  let mut nn = FeedForward::new(&[1, 7, 8, 8, 7, 1]);
//!
//!  /*
//!      Define DataSet.
//!
//!      DataSet is the Type that significantly simplifies work with neural network.
//!      Majority of its functionality is still under development :(
//!  */
//!  let mut data: DataSet = DataSet::new();
//!  let mut i = -3.0;
//!
//!  // Push the data to DataSet (method push accepts two slices: input data and expected output)
//!  while i <= 2.5 {
//!      data.push(&[i], &[0.5*(i.exp().sin()) - (-i.exp()).cos()]);
//!      i += 0.05;
//!  }
//!
//!  // Here, we set necessary parameters and train neural network
//!  // by our DataSet with 50 000 iterations
//!  nn.activation(Tanh)
//!      .learning_rate(0.01)
//!      .train(&data, 50_000);
//!
//!  let mut res;
//!
//!  // Let's check the result
//!  i = 0.0;
//!  while i <= 0.3{
//!      res = nn.calc(&[i])[0];
//!      println!("for [{:.3}], [{:.3}] -> [{:.3}]", i, 0.5*(i.exp().sin()) - (-i.exp()).cos(), res);
//!      i += 0.07;
//!  }
//! ```
//!
//! You don't need to lose your so hardly trained network, my friend! For those there are
//! functions for saving and loading of neural networks to and from file. They are
//! located in the `neuroflow::io` module.
//!
//! ```rust
//! # use neuroflow::FeedForward;
//! use neuroflow::io;
//! # let mut nn = FeedForward::new(&[1, 7, 8, 8, 7, 1]);
//!  /*
//!     In order to save neural network into file call function save from neuroflow::io module.
//!
//!     First argument is link on the saving neural network;
//!     Second argument is path to the file.
//! */
//! io::save(&mut nn, "test.flow").unwrap();
//!
//! /*
//!     After we have saved the neural network to the file we can restore it by calling
//!     of load function from neuroflow::io module.
//!
//!     We must specify the type of new_nn variable.
//!     The only argument of load function is the path to file containing
//!     the neural network
//! */
//! let mut new_nn: FeedForward = io::load("test.flow").unwrap();
//! ```
//!
//! We did say a little words about `DataSet` structure. It deserves to be considered
//! more precisely.
//!
//! Simply saying `DataSet` is just container for your input vectors and desired output to them,
//! but with additional functionality.
//!
//! ```rust
//! use std::path::Path;
//! use neuroflow::data::DataSet;
//!
//! // You can create empty DataSet calling its constructor new
//! let mut d1 = DataSet::new();
//!
//! // To push new data to DataSet instance call push method
//! d1.push(&[0.1, 0.2], &[1.0, 2.3]);
//! d1.push(&[0.05, 0.01], &[0.5, 1.1]);
//!
//! // You can load data from csv file
//! let p = "file.csv";
//! if Path::new(p).exists(){
//!     let mut d2 = DataSet::from_csv(p); // Easy, eah?
//! }
//!
//! // You can round all DataSet elements with precision
//! d1.round(2); // 2 is the amount of digits after point
//!
//! // Also, it is possible to get some statistical information.
//! // For current version it is possible to get only mean values (by each dimension or by
//! // other words each column in vector) of input vector and desired output vector
//! let (x, y) = d1.mean();
//!
//! ```
//!

pub mod activators;
pub mod estimators;
pub mod data;
pub mod io;

extern crate rand;
extern crate serde;
extern crate serde_json;
extern crate bincode;
extern crate csv;

#[macro_use]
extern crate serde_derive;

use std::fmt;
use std::default::Default;

use data::Extractable;

/// Custom ErrorKind enum for handling multiple error types
#[derive(Debug)]
pub enum ErrorKind {
    IO(std::io::Error),
    Encoding(bincode::Error),
    Json(serde_json::Error),
    StdError(Box<dyn std::error::Error>)
}

/// The struct that points different fields of network.
/// It is used only for Display trait. Should be deleted in future versions
#[allow(dead_code)]
enum Field {
    Induced,
    Y,
    Deltas,
    Weights
}

/// This trait should be implemented by neural network structure when you want it
/// to be transformable to other formats. `Note` that you, also, need to implement
/// `serde::Serialize` and `serde::Deserialize` traits before. Hopefully you can
/// do it easily with `derive` attribute.
///
/// Necessity of this trait can be easily described when you restore `FeedForward` instance
/// by `neuroflow::io::load` function. It calls `after` method in order to adjust
/// activation function of neural network.
pub trait Transform: serde::Serialize + for <'de> serde::Deserialize<'de>{
    /// The method that should be called before neural network transformation
    fn before(&mut self){}

    /// The method that should be called after neural network transformation
    fn after(&mut self){}
}

/// Struct `Layer` represents single layer of network.
/// It is private and should not be used directly.
#[derive(Serialize, Deserialize)]
struct Layer {
    v: Vec<f64>,
    y: Vec<f64>,
    delta: Vec<f64>,
    prev_delta: Vec<f64>,
    w: Vec<Vec<f64>>,
}

/// This struct is a container for chosen activation function and its derivative.
/// It is useful when in network's serialization in order to skip function
/// in serialization
struct ActivationContainer{
    func: fn(f64) -> f64,
    der: fn(f64) -> f64
}

/// Feed Forward (multilayer perceptron) neural network that is trained
/// by back propagation algorithm.
/// You can use it for approximation and classification tasks as well.
///
/// # Examples
///
/// In order to create `FeedForward` instance call its constructor `new`.
///
/// The constructor accepts slice as an argument. This slice determines
/// the architecture of network.
/// First element in slice is amount of neurons in input layer
/// and the last one is amount of neurons in output layer.
/// Denote, that vector of input data must have the equal length as input
/// layer of FeedForward neural network (the same is for expected output vector).
///
/// ```rust
/// use neuroflow::FeedForward;
///
/// let mut nn = FeedForward::new(&[1, 3, 2]);
/// ```
///
/// Then you can train your network simultaneously via `fit` method:
///
/// ```rust
/// # use neuroflow::FeedForward;
/// # let mut nn = FeedForward::new(&[1, 3, 2]);
/// nn.fit(&[1.2], &[0.2, 0.8]);
/// ```
///
/// Or to use `train` method with `neuroflow::data::DataSet` struct:
///
/// ```rust
/// # use neuroflow::FeedForward;
/// # let mut nn = FeedForward::new(&[1, 3, 2]);
/// use neuroflow::data::DataSet;
///
/// let mut data = DataSet::new();
/// data.push(&[1.2], &[1.3, -0.2]);
/// nn.train(&data, 30_000); // 30_000 is iterations count
/// ```
///
/// It is possible to set parameters of network:
/// ```rust
/// # use neuroflow::FeedForward;
/// # let mut nn = FeedForward::new(&[1, 3, 2]);
/// nn.learning_rate(0.1)
///   .momentum(0.05)
///   .activation(neuroflow::activators::Type::Tanh);
/// ```
///
/// Call method `calc` in order to calculate value by your(already trained) network:
///
/// ```rust
/// # use neuroflow::FeedForward;
/// # let mut nn = FeedForward::new(&[1, 3, 2]);
/// let d: Vec<f64> = nn.calc(&[1.02]).to_vec();
/// ```
///
#[derive(Serialize, Deserialize)]
pub struct FeedForward {
    layers: Vec<Layer>,
    learn_rate: f64,
    momentum: f64,
    error: f64,

    act_type: activators::Type,

    #[serde(skip_deserializing, skip_serializing)]
    act: ActivationContainer
}

impl Layer {
    fn new(amount: i32, input: i32) -> Layer {
        let mut nl = Layer {v: vec![], y: vec![], delta: vec![], prev_delta: vec![], w: Vec::new()};
        let mut v: Vec<f64>;
        for _ in 0..amount {
            nl.y.push(0.0);
            nl.delta.push(0.0);
            nl.v.push(0.0);

            v = Vec::new();
            for _ in 0..input + 1{
                v.push(2f64 * rand::random::<f64>() - 1f64);
            }

            nl.w.push(v);
        }
        return nl;
    }

    fn bind(&mut self, index: usize){
        self.v.insert(index, 0.0);
        self.y.insert(index, 0.0);
        self.delta.insert(index, 0.0);

        let mut v: Vec<f64> = Vec::new();
        let len = self.w[index].len();

        for _ in 0..len{
            v.push(2f64 * rand::random::<f64>() - 1f64);
        }
        self.w.insert(index, v);
    }

    fn unbind(&mut self, index: usize){
        self.v.remove(index);
        self.y.remove(index);
        self.delta.remove(index);
        self.w.remove(index);
    }
}

impl FeedForward {
    /// The constructor of `FeedForward` struct
    ///
    /// * `architecture: &[i32]` - the architecture of network where each
    /// element in slice represents amount of neurons in this layer.
    /// First element in slice is amount of neurons in input layer
    /// and the last one is amount of neurons in output layer.
    /// Denote, that vector of input data must have the equal length as input
    /// layer of FeedForward neural network (the same is for expected output vector).
    ///
    /// * `return` - `FeedForward` struct
    /// # Example
    ///
    /// ```rust
    /// use neuroflow::FeedForward;
    /// let mut nn = FeedForward::new(&[1, 3, 2]);
    /// ```
    ///
    pub fn new(architecture: &[i32]) -> FeedForward {
        let mut nn = FeedForward {learn_rate: 0.1, momentum: 0.1, error: 0.0,
            layers: Vec::new(),
            act: ActivationContainer{func: activators::tanh, der: activators::der_tanh},
            act_type: activators::Type::Tanh};

        for i in 1..architecture.len() {
            nn.layers.push(Layer::new(architecture[i], architecture[i - 1]))
        }

        return nn;
    }

    fn forward(&mut self, x: &Vec<f64>){
        let mut sum: f64;

        for j in 0..self.layers.len(){
            if j == 0{
                for i in 0..self.layers[j].v.len(){
                    sum = 0.0;
                    for k in 0..x.len(){
                        sum += self.layers[j].w[i][k] * x[k];
                    }
                    self.layers[j].v[i] = sum;
                    self.layers[j].y[i] = (self.act.func)(sum);
                }
            }
            else if j == self.layers.len() - 1{
                for i in 0..self.layers[j].v.len(){
                    sum = self.layers[j].w[i][0];
                    for k in 0..self.layers[j - 1].y.len(){
                        sum += self.layers[j].w[i][k + 1] * self.layers[j - 1].y[k];
                    }
                    self.layers[j].v[i] = sum;
                    self.layers[j].y[i] = sum;
                }
            }
            else {
                for i in 0..self.layers[j].v.len(){
                    sum = self.layers[j].w[i][0];
                    for k in 0..self.layers[j - 1].y.len(){
                        sum += self.layers[j].w[i][k + 1] * self.layers[j - 1].y[k];
                    }
                    self.layers[j].v[i] = sum;
                    self.layers[j].y[i] = (self.act.func)(sum);
                }
            }
        }
    }

    fn backward(&mut self, d: &Vec<f64>){
        let mut sum: f64;

        for j in (0..self.layers.len()).rev(){
            self.layers[j].prev_delta = self.layers[j].delta.clone();
            if j == self.layers.len() - 1{
                self.error = 0.0;
                for i in 0..self.layers[j].y.len(){
                    self.layers[j].delta[i] = (d[i] - self.layers[j].y[i])* (self.act.der)(self.layers[j].v[i]);
                    self.error += 0.5 * (d[i] - self.layers[j].y[i]).powi(2);
                }
            } else {
                for i in 0..self.layers[j].delta.len(){
                    sum = 0.0;
                    for k in 0..self.layers[j + 1].delta.len(){
                        sum += self.layers[j + 1].delta[k] * self.layers[j + 1].w[k][i + 1];
                    }
                    self.layers[j].delta[i] = (self.act.der)(self.layers[j].v[i]) * sum;
                }
            }
        }
    }

    fn update(&mut self, x: &Vec<f64>){
        for j in 0..self.layers.len(){
            for i in 0..self.layers[j].w.len(){
                for k in 0..self.layers[j].w[i].len(){
                    if j == 0 {
                        self.layers[j].w[i][k] += self.learn_rate * self.layers[j].delta[i]*x[k];
                    } else {
                        if k == 0{
                            self.layers[j].w[i][k] += self.learn_rate * self.layers[j].delta[i];
                        } else {
                            self.layers[j].w[i][k] += self.learn_rate * self.layers[j].delta[i]*self.layers[j - 1].y[k - 1];
                        }
                    }
                    self.layers[j].w[i][k] += self.momentum * self.layers[j].prev_delta[i];
                }
            }
        }
    }

    /// Bind a new neuron to layer. It initializes neuron with
    /// random weights.
    ///
    /// * `layer: usize` - index of layer. NOTE, layer indexing starts from 1!
    /// * `neuron: usize` - index of neuron. NOTE, neurons indexing in layer starts from 0!
    ///
    /// # Examples
    ///
    /// ```rust
    /// # use neuroflow::FeedForward;
    /// # let mut nn = FeedForward::new(&[1, 3, 2]);
    /// nn.bind(2, 0);
    /// ```
    pub fn bind(&mut self, layer: usize, neuron: usize){
        self.layers[layer - 1].bind(neuron);
    }

    /// Unbind neuron from layer.
    ///
    /// * `layer: usize` - index of layer. NOTE, layer indexing starts from 1!
    /// * `neuron: usize` - index of neuron. NOTE, neurons indexing in layer starts from 0!
    ///
    /// # Examples
    ///
    /// ```rust
    /// # use neuroflow::FeedForward;
    /// # let mut nn = FeedForward::new(&[1, 3, 2]);
    /// nn.unbind(2, 0);
    /// ```
    pub fn unbind(&mut self, layer: usize, neuron: usize){
        self.layers[layer - 1].unbind(neuron);
    }

    /// Train neural network by bulked data.
    ///
    /// * `data: &T` - the link on data that implements `neuroflow::data::Extractable` trait;
    /// * `iterations: i64` - iterations count.
    ///
    /// # Examples
    ///
    /// ```rust
    /// # use neuroflow::FeedForward;
    /// # let mut nn = FeedForward::new(&[1, 3, 2]);
    /// let mut d = neuroflow::data::DataSet::new();
    /// d.push(&[1.2], &[1.3, -0.2]);
    /// nn.train(&d, 30_000);
    /// ```
    pub fn train<T>(&mut self, data: &T, iterations: i64) where T: Extractable{
        for _ in 0..iterations{
            let (x, y) = data.rand();
            self.fit(&x, &y);
        }
    }

    /// Train neural network simultaneously step by step
    ///
    /// * `X: &[f64]` - slice of input data;
    /// * `d: &[f64]` - expected output.
    ///
    /// # Examples
    ///
    /// ```rust
    /// # use neuroflow::FeedForward;
    /// # let mut nn = FeedForward::new(&[1, 3, 2]);
    /// nn.fit(&[3.0], &[3.0, 5.0]);
    /// ```
    #[allow(non_snake_case)]
    pub fn fit(&mut self, X: &[f64], d: &[f64]){
        let mut x = X.to_vec();
        let res = d.to_vec();

        x.insert(0, 1f64);

        self.forward(&x);
        self.backward(&res);
        self.update(&x);
    }

    /// Calculate the response by trained neural network.
    ///
    /// * `X: &[f64]` - slice of input data;
    /// * `return -> &[f64]` - slice of calculated data.
    ///
    /// # Examples
    ///
    /// ```rust
    /// # use neuroflow::FeedForward;
    /// # let mut nn = FeedForward::new(&[1, 3, 2]);
    /// let v: Vec<f64> = nn.calc(&[1.02]).to_vec();
    /// ```
    #[allow(non_snake_case)]
    pub fn calc(&mut self, X: &[f64]) -> &[f64]{
        let mut x = X.to_vec();

        x.insert(0, 1f64);

        self.forward(&x);
        &self.layers[self.layers.len() - 1].y
    }

    /// Choose activation function. `Note` that if you pass `activators::Type::Custom`
    /// as argument of this method, the default value (`activators::Type::Tanh`) will
    /// be used.
    ///
    /// * `func: neuroflow::activators::Type` - enum element that indicates which
    /// function to use;
    /// * `return -> &mut FeedForward` - link on the current struct.
    pub fn activation(&mut self, func: activators::Type) -> &mut FeedForward{
        match func{
            activators::Type::Sigmoid => {
                self.act_type = activators::Type::Sigmoid;
                self.act.func = activators::sigm;
                self.act.der = activators::der_sigm;
            }
            activators::Type::Tanh | activators::Type::Custom => {
                self.act_type = activators::Type::Tanh;
                self.act.func = activators::tanh;
                self.act.der = activators::der_tanh;
            }
            activators::Type::Relu => {
                self.act_type = activators::Type::Relu;
                self.act.func = activators::relu;
                self.act.der = activators::der_relu;
            }
        }
        self
    }

    /// Set custom activation function and its derivative.
    /// Activation type is set to `activators::Type::Custom`.
    ///
    /// * `func: fn(f64) -> f64` - activation function to be set;
    /// * `der: fn(f64) -> f64` - derivative of activation function;
    /// * `return -> &mut FeedForward` - link on the current struct.
    ///
    /// # Warning
    ///
    /// Be careful using custom activation function. For good results this function
    /// should be smooth, non-decreasing, and differentiable.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use neuroflow::FeedForward;
    ///
    /// fn sigmoid(x: f64) -> f64{
    ///     1.0/(1.0 + x.exp())
    /// }
    ///
    /// fn der_sigmoid(x: f64) -> f64{
    ///     sigmoid(x)*(1.0 - sigmoid(x))
    /// }
    ///
    /// let mut nn = FeedForward::new(&[1, 3, 2]);
    /// nn.custom_activation(sigmoid, der_sigmoid);
    /// ```
    pub fn custom_activation(&mut self, func: fn(f64) -> f64, der: fn(f64) -> f64) -> &mut FeedForward{
        self.act_type = activators::Type::Custom;

        self.act.func = func;
        self.act.der = der;

        self
    }

    /// Set the learning rate of network.
    ///
    /// * `learning_rate: f64` - learning rate;
    /// * `return -> &mut FeedForward` - link on the current struct.
    ///
    /// # Examples
    ///
    /// ```rust
    /// # use neuroflow::FeedForward;
    /// # let mut nn = FeedForward::new(&[1, 3, 2]);
    /// nn.learning_rate(0.1);
    /// ```
    pub fn learning_rate(&mut self, learning_rate: f64) -> &mut FeedForward {
        self.learn_rate = learning_rate;
        self
    }

    /// Set the momentum of network.
    ///
    /// * `momentum: f64` - momentum;
    /// * `return -> &mut FeedForward` - link on the current struct.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use neuroflow::FeedForward;
    /// # let mut nn = FeedForward::new(&[1, 3, 2]);
    /// nn.momentum(0.05);
    /// ```
    pub fn momentum(&mut self, momentum: f64) -> &mut FeedForward {
        self.momentum = momentum;
        self
    }

    /// Get current training error
    ///
    /// * `return -> f64` - training error
    pub fn get_error(&self) -> f64{
        self.error
    }
}

impl Transform for FeedForward{
    fn after(&mut self){
        match self.act_type {
            activators::Type::Sigmoid => {
                self.act_type = activators::Type::Sigmoid;
                self.act.func = activators::sigm;
                self.act.der = activators::der_sigm;
            }
            activators::Type::Tanh | activators::Type::Custom => {
                self.act_type = activators::Type::Tanh;
                self.act.func = activators::tanh;
                self.act.der = activators::der_tanh;
            }
            activators::Type::Relu => {
                self.act_type = activators::Type::Relu;
                self.act.func = activators::relu;
                self.act.der = activators::der_relu;
            }
        }
    }
}

impl Default for ActivationContainer{
    fn default() -> ActivationContainer {
        ActivationContainer{func: activators::tanh, der: activators::der_tanh}
    }
}

impl fmt::Display for FeedForward {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result{
        let mut buf: String = format!("**Induced field**\n");

        for v in self.layers.iter(){
            for val in v.v.iter(){
                buf += &format!("{:.3} ", val);
            }
            buf += "\n";
        }
        buf += "\n";

        buf += "**Activated field**\n";
        for v in self.layers.iter(){
            for val in v.y.iter(){
                buf += &format!("{:.3} ", val);
            }
            buf += "\n";
        }
        buf += "\n";

        buf += "**Deltas**\n";
        for v in self.layers.iter(){
            for val in v.delta.iter(){
                buf += &format!("{:.3} ", val);
            }
            buf += "\n";
        }
        buf += "\n";

        buf += "**Weights**\n";
        for v in self.layers.iter() {
            for val in v.w.iter() {
                buf += "[";
                for cell in val.iter() {
                    buf += &format!("{:.3} ", cell);
                }
                buf += "]";
            }
            buf += "\n";
        }

        buf.fmt(f)
    }
}