1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
use nettle_sys::{
    __gmpz_add_ui, __gmpz_clear, __gmpz_cmp_ui, __gmpz_fdiv_r, __gmpz_init,
    __gmpz_invert, __gmpz_mul, __gmpz_set, __gmpz_sub_ui,
    nettle_mpz_set_str_256_u, nettle_mpz_sizeinbase_256_u,
    nettle_rsa_generate_keypair, nettle_rsa_private_key_clear,
    nettle_rsa_private_key_init, nettle_rsa_private_key_prepare,
    nettle_rsa_public_key_clear, nettle_rsa_public_key_init,
    nettle_rsa_public_key_prepare, rsa_private_key, rsa_public_key,
};
use std::mem::zeroed;

use crate::helper::convert_gmpz_to_buffer;
use crate::{Error, random::Random, Result};

/// A public RSA key.
pub struct PublicKey {
    pub(crate) context: rsa_public_key,
    pub(crate) modulo_bytes: usize,
}

impl PublicKey {
    /// Creates a new RSA public key with the modulo `n` and the public exponent `e`. Both are
    /// expected to be big endian integers.
    pub fn new(n: &[u8], e: &[u8]) -> Result<PublicKey> {
        unsafe {
            let mut ctx: rsa_public_key = zeroed();

            nettle_rsa_public_key_init(&mut ctx as *mut _);
            nettle_mpz_set_str_256_u(
                &mut ctx.e[0] as *mut _,
                e.len(),
                e.as_ptr(),
            );
            nettle_mpz_set_str_256_u(
                &mut ctx.n[0] as *mut _,
                n.len(),
                n.as_ptr(),
            );

            let mut ret = PublicKey { context: ctx, modulo_bytes: n.len() };

            if nettle_rsa_public_key_prepare(&mut ret.context as *mut _) == 1 {
                Ok(ret)
            } else {
                Err(Error::InvalidArgument { argument_name: "" })
            }
        }
    }

    /// Returns the modulo as a big endian integer.
    pub fn n(&self) -> Box<[u8]> {
        convert_gmpz_to_buffer(self.context.n[0])
    }

    /// Returns the public exponent as a big endian integer.
    pub fn e(&self) -> Box<[u8]> {
        convert_gmpz_to_buffer(self.context.e[0])
    }
}

impl Clone for PublicKey {
    fn clone(&self) -> Self {
        unsafe {
            let mut ret = zeroed();

            nettle_rsa_public_key_init(&mut ret);
            __gmpz_set(&mut ret.e[0], &self.context.e[0]);
            __gmpz_set(&mut ret.n[0], &self.context.n[0]);

            PublicKey { context: ret, modulo_bytes: self.modulo_bytes }
        }
    }
}

impl Drop for PublicKey {
    fn drop(&mut self) {
        unsafe {
            nettle_rsa_public_key_clear(&mut self.context as *mut _);
        }
    }
}

/// A private RSA key.
pub struct PrivateKey {
    pub(crate) context: rsa_private_key,
}

impl PrivateKey {
    /// Creates a new private key with the private exponent `d` and the two primes `p`/`q`.
    /// If the inverse `inv` for `q` in Z_p is `None` the function computes it.
    ///
    /// # Notes
    /// This function does time-variable computation on the private key that may leak it. See
    /// `new_crt` for a time-constant way to create a PrivateKey.
    pub fn new<'a, O: Into<Option<&'a [u8]>>>(
        d: &[u8],
        p: &[u8],
        q: &[u8],
        inv: O,
    ) -> Result<Self> {
        unsafe {
            let mut ctx: rsa_private_key = zeroed();

            nettle_rsa_private_key_init(&mut ctx as *mut _);
            nettle_mpz_set_str_256_u(
                &mut ctx.d[0] as *mut _,
                d.len(),
                d.as_ptr(),
            );
            nettle_mpz_set_str_256_u(
                &mut ctx.p[0] as *mut _,
                p.len(),
                p.as_ptr(),
            );
            nettle_mpz_set_str_256_u(
                &mut ctx.q[0] as *mut _,
                q.len(),
                q.as_ptr(),
            );

            __gmpz_sub_ui(&mut ctx.p[0] as *mut _, &ctx.p[0] as *const _, 1);
            __gmpz_fdiv_r(
                &mut ctx.a[0] as *mut _,
                &ctx.d[0] as *const _,
                &ctx.p[0] as *const _,
            );
            __gmpz_add_ui(&mut ctx.p[0] as *mut _, &ctx.p[0] as *const _, 1);

            __gmpz_sub_ui(&mut ctx.q[0] as *mut _, &ctx.q[0] as *const _, 1);
            __gmpz_fdiv_r(
                &mut ctx.b[0] as *mut _,
                &ctx.d[0] as *const _,
                &ctx.q[0] as *const _,
            );
            __gmpz_add_ui(&mut ctx.q[0] as *mut _, &ctx.q[0] as *const _, 1);

            if let Some(inv) = inv.into() {
                nettle_mpz_set_str_256_u(
                    &mut ctx.c[0] as *mut _,
                    inv.len(),
                    inv.as_ptr(),
                );
            } else {
                __gmpz_invert(
                    &mut ctx.c[0] as *mut _,
                    &ctx.q[0] as *const _,
                    &ctx.p[0] as *const _,
                );
            }

            let mut ret = PrivateKey { context: ctx };

            if nettle_rsa_private_key_prepare(&mut ret.context as *mut _) == 1 {
                Ok(ret)
            } else {
                Err(Error::InvalidArgument { argument_name: "" })
            }
        }
    }

    /// Creates a new private key with the two primes `p`/`q`. The private exponent `d` is given as
    /// `dp = d mod p - 1` and `dq = d mod q - 1`. If the inverse `inv` of `q` in Z_p is `None`
    /// the function computes it.
    ///
    /// # Notes
    /// If `inv` is `None` the function does time-variable computation on the private key that may leak it.
    pub fn new_crt<'a, O: Into<Option<&'a [u8]>>>(
        dp: &[u8],
        dq: &[u8],
        p: &[u8],
        q: &[u8],
        inv: O,
    ) -> Result<Self> {
        unsafe {
            let mut ctx: rsa_private_key = zeroed();

            // d isn't used in nettle
            nettle_rsa_private_key_init(&mut ctx as *mut _);
            nettle_mpz_set_str_256_u(
                &mut ctx.p[0] as *mut _,
                p.len(),
                p.as_ptr(),
            );
            nettle_mpz_set_str_256_u(
                &mut ctx.q[0] as *mut _,
                q.len(),
                q.as_ptr(),
            );
            nettle_mpz_set_str_256_u(
                &mut ctx.a[0] as *mut _,
                dp.len(),
                dp.as_ptr(),
            );
            nettle_mpz_set_str_256_u(
                &mut ctx.b[0] as *mut _,
                dq.len(),
                dq.as_ptr(),
            );

            if let Some(inv) = inv.into() {
                nettle_mpz_set_str_256_u(
                    &mut ctx.c[0] as *mut _,
                    inv.len(),
                    inv.as_ptr(),
                );
            } else {
                __gmpz_invert(
                    &mut ctx.c[0] as *mut _,
                    &ctx.q[0] as *const _,
                    &ctx.p[0] as *const _,
                );
            }

            let mut ret = PrivateKey { context: ctx };

            if nettle_rsa_private_key_prepare(&mut ret.context as *mut _) == 1 {
                Ok(ret)
            } else {
                Err(Error::InvalidArgument { argument_name: "" })
            }
        }
    }

    /// Computes the public key to this private key. This only works if the private key was created
    /// with `new` instead of `new_crt`.
    ///
    /// # Notes
    /// This function does time-variable computation on the private key that may leak it.
    pub fn public_key(&self) -> Result<PublicKey> {
        unsafe {
            let mut p_minus_1 = zeroed();
            let mut q_minus_1 = zeroed();
            let mut phi = zeroed();
            let mut ret: rsa_public_key = zeroed();

            nettle_rsa_public_key_init(&mut ret as *mut _);
            __gmpz_init(&mut p_minus_1);
            __gmpz_init(&mut q_minus_1);
            __gmpz_init(&mut phi);

            __gmpz_sub_ui(&mut p_minus_1, &self.context.p[0], 1);
            __gmpz_sub_ui(&mut q_minus_1, &self.context.q[0], 1);
            __gmpz_mul(&mut phi, &p_minus_1, &q_minus_1);
            __gmpz_invert(&mut ret.e[0], &self.context.d[0], &phi);
            __gmpz_mul(&mut ret.n[0], &self.context.p[0], &self.context.q[0]);

            __gmpz_clear(&mut p_minus_1);
            __gmpz_clear(&mut q_minus_1);
            __gmpz_clear(&mut phi);

            let len = nettle_mpz_sizeinbase_256_u(&mut ret.n[0]);
            let mut ret = PublicKey { context: ret, modulo_bytes: len };

            if __gmpz_cmp_ui(&ret.context.e[0], 0) == 0 {
                Err(Error::InvalidArgument { argument_name: "self" })
            } else if nettle_rsa_public_key_prepare(&mut ret.context as *mut _)
                == 1
            {
                Ok(ret)
            } else {
                Err(Error::InvalidArgument { argument_name: "" })
            }
        }
    }

    /// Returns the tuple `a`, `b`, `c`. `a` and `b` are the two RSA primes `p`/`q` with `a` < `b` and
    /// `c = a^-1 mod b`.
    pub fn as_rfc4880(&self) -> (Box<[u8]>, Box<[u8]>, Box<[u8]>) {
        let p = convert_gmpz_to_buffer(self.context.p[0]);
        let q = convert_gmpz_to_buffer(self.context.q[0]);

        if p < q {
            unsafe {
                // RFC4880: u == p^-1 mod q
                // Nettle: c == q^-1 mod p
                let mut inv = zeroed();

                __gmpz_init(&mut inv);
                __gmpz_invert(
                    &mut inv as *mut _,
                    &self.context.p[0] as *const _,
                    &self.context.q[0] as *const _,
                );

                let tmp = convert_gmpz_to_buffer(inv);
                __gmpz_clear(&mut inv);

                (p, q, tmp)
            }
        } else {
            let inv = convert_gmpz_to_buffer(self.context.c[0]);

            (q, p, inv)
        }
    }

    /// Returns the primes `p`/`q` as big endian integers.
    pub fn primes(&self) -> (Box<[u8]>, Box<[u8]>) {
        let p = convert_gmpz_to_buffer(self.context.p[0]);
        let q = convert_gmpz_to_buffer(self.context.q[0]);

        (p, q)
    }

    /// Returns the private exponent `d` as pair of big endian integers `dp = d mod p - 1` and `dq
    /// = d mod q - 1` and the inverse of `q` in Z_p as third value.
    pub fn d_crt(&self) -> (Box<[u8]>, Box<[u8]>, Box<[u8]>) {
        let dp = convert_gmpz_to_buffer(self.context.a[0]);
        let dq = convert_gmpz_to_buffer(self.context.b[0]);
        let inv = convert_gmpz_to_buffer(self.context.c[0]);

        (dp, dq, inv)
    }

    /// Returns the private exponent `d` as big endian integer.
    pub fn d(&self) -> Box<[u8]> {
        convert_gmpz_to_buffer(self.context.d[0])
    }
}

impl Clone for PrivateKey {
    fn clone(&self) -> Self {
        unsafe {
            let mut ret = zeroed();

            nettle_rsa_private_key_init(&mut ret);
            __gmpz_set(&mut ret.p[0], &self.context.p[0]);
            __gmpz_set(&mut ret.q[0], &self.context.q[0]);
            __gmpz_set(&mut ret.a[0], &self.context.a[0]);
            __gmpz_set(&mut ret.b[0], &self.context.b[0]);

            PrivateKey { context: ret }
        }
    }
}

impl Drop for PrivateKey {
    fn drop(&mut self) {
        unsafe {
            nettle_rsa_private_key_clear(&mut self.context as *mut _);
        }
    }
}

/// Generates a fresh RSA key pair usable for signing and encryption. The public modulo `n` will be
/// `modulo_size` bits large. The public exponent is fixed to `0x10001`.
pub fn generate_keypair<R: Random>(
    random: &mut R,
    modulo_size: u32,
) -> Result<(PublicKey, PrivateKey)> {
    use std::ptr;

    let e = [0x01, 0x00, 0x01];

    unsafe {
        let mut public_ctx: rsa_public_key = zeroed();
        let mut private_ctx: rsa_private_key = zeroed();

        nettle_rsa_private_key_init(&mut private_ctx as *mut _);
        nettle_rsa_public_key_init(&mut public_ctx as *mut _);
        nettle_mpz_set_str_256_u(
            &mut public_ctx.e[0] as *mut _,
            e.len(),
            e.as_ptr(),
        );

        if nettle_rsa_generate_keypair(
            &mut public_ctx as *mut _,
            &mut private_ctx as *mut _,
            random.context(),
            Some(R::random_impl),
            ptr::null_mut(),
            None,
            modulo_size,
            0,
        ) == 1
        {
            Ok((
                PublicKey {
                    context: public_ctx,
                    modulo_bytes: modulo_size as usize / 8,
                },
                PrivateKey { context: private_ctx },
            ))
        } else {
            nettle_rsa_public_key_clear(&mut public_ctx as *mut _);
            nettle_rsa_private_key_clear(&mut private_ctx as *mut _);
            Err(Error::KeyGenerationFailed)
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn load_public_key() {
        let n = &b"\xcc\xc3\x86\x4e\x2b\x3d\x2d\x08\x89\x66\x90\x49\x75\x4f\xb8\x53\xa0\xbe\x04\xd0\x74\x49\x85\xe8\xc7\xf3\x84\x3b\xce\xa0\x12\xc2\x2a\x19\x18\x94\x6e\xda\x69\xb1\x1b\xed\x91\x96\xba\xb2\x58\x0f\x4c\xa6\x5f\xd3\x49\x08\xc5\x40\x58\xe9\xd1\x7a\xb0\x57\xed\x75\xad\xef\x51\x71\x5a\x8d\x9d\x43\x04\x32\x36\xff\xc1\x1f\xf8\x89\x95\x7d\x92\xcd\x72\x60\xb0\xa1\xe6\x20\x63\x1e\x03\x4b\x07\x48\x2d\xd6\xe5\xf6\xad\x30\xa9\x87\x81\x2a\x82\x00\x03\x9f\x53\x05\x71\x11\x65\xf0\xf8\xa8\x6e\xe7\x31\xb8\xd1\xf0\x58\xae\xad\x69\x72\x36\x80\x3b\xdd\x03\x8c\xa6\xc4\xf6\x22\xd7\xd4\x58\x92\xbc\xa0\x26\xd8\xd9\x49\xbe\xfe\x80\x35\x88\x02\xff\x7a\x5a\x40\xc2\xc6\x72\xa9\x3c\xf3\xf0\x61\x60\x45\x3c\xf7\xa1\x96\x66\x54\xde\x9d\xd0\xcb\xeb\xa7\x81\x3b\xda\x29\x0f\xbe\x03\xb0\xfe\xcc\xaf\x19\xdd\xcd\x15\x86\x49\xf8\xc0\xa5\x08\x3b\x2a\x42\x3d\xe2\x00\x33\x6c\x40\x70\x8c\xfc\x4a\x3e\x83\x1e\x7a\x53\x0c\x07\x0f\xc6\xfd\x31\xd5\xf8\x1e\xa7\x73\x47\x67\xf5\x76\x0a\xb1\x02\xa4\xd0\xcb\x79\xb2\xeb\x9c\x93\xa0\x6b\x23\xd2\xa7\x5b\xbb\x40\xa0\x95"[..];
        let e = &b"\x01\x00\x01"[..];

        assert!(PublicKey::new(n, e).is_ok());
        assert!(PublicKey::new(e, n).is_err());

        let key1 = PublicKey::new(n, e).unwrap();
        assert_eq!(&(*key1.e())[..], e);
        assert_eq!(&(*key1.n())[..], n);
    }

    #[test]
    fn load_private_key() {
        let p = &b"\xf8\xb6\x0f\xca\xc8\x11\xf3\x6e\x68\x2f\x87\xd0\xbb\xb0\x46\x7e\x3f\x20\x6e\xf8\x61\xc1\xc8\x64\xa5\xfc\xda\xc2\x01\x4b\xf5\x11\x16\xa6\xd4\x9d\x45\x26\x37\x1e\x32\x1a\x60\x71\x11\xf9\x1a\xb3\x83\x50\xfa\xdc\x95\x96\x73\xbc\x50\xb6\x6d\xc4\x18\x0e\x1d\x0a\x31\xf2\x63\xae\xb5\xad\xb3\xfc\x8f\x1e\x76\x3b\x38\xfa\x2d\x4c\x48\x04\x59\xae\x5f\x49\xc0\x7a\xea\x0c\x37\xeb\xb9\xa6\x23\xff\xf2\x84\x70\x21\xba\x60\xf1\x9c\x85\xe4\xe3\x68\x74\xef\x92\x10\xb1\xcb\x50\x4a\xd2\xdf\xcb\x3a\xbb\xdd\x1c\x1c\x25\xe1\x0c\x45"[..];
        let q = &b"\xd2\xc3\xc0\x24\x48\x44\x7d\xe2\x43\x13\xf2\x51\x58\x07\x07\x6a\x7b\xc1\x37\x09\x3d\xc7\xcf\x04\x3d\xfc\xee\x91\x20\x3b\xe7\x94\x3d\xb0\x43\xb8\x19\x56\x77\x0e\xca\x89\xb1\x15\xa5\xbf\x8e\xa7\xe6\xa0\xf8\x89\x71\xef\xc8\x29\xba\xfe\x2e\xd0\xb2\x4d\xf2\xf5\xf0\x0a\x51\x84\x45\x99\x3b\x7d\x43\xa1\x0e\x5f\x2a\x35\x3e\x21\xb2\xe6\x5d\x7d\x37\xa9\xb9\xcb\x29\x9f\x83\x3e\xe7\x8c\xe4\x9a\x1e\xc5\x12\xa6\x5e\x75\x79\x54\x6c\x0d\x0e\x37\x02\x93\xe6\x94\x50\x25\x62\x0d\xf9\x4a\x85\xb2\x8a\xdb\x9b\xcd\xc9\x48\x90\x11"[..];
        let d = &b"\xb9\x82\x12\x75\x53\x3b\x13\x47\x7e\xa3\xca\xe8\xa2\x3d\x5d\x33\x76\x97\x70\x69\x22\x51\x51\xde\x38\xf8\x67\xbe\x7f\x4e\x0a\x70\x9a\x0f\x2e\x73\x9b\x92\x88\xda\x8a\x00\xcb\x3b\x91\x5c\xed\xe6\xbe\x7c\xa4\xa8\x18\xac\xb7\x77\xba\x95\xea\xd0\x8a\x5e\xbe\xa5\x34\xb5\x72\x45\x8d\xd2\x6a\xbd\x42\x59\xf3\xf5\xf5\x13\x6f\xe9\xc5\xe3\x84\x52\x58\xe3\x3c\x63\x10\xc8\x1a\xc4\x20\x1b\xa3\x37\x43\x40\x44\x0b\x1d\x90\xce\xa6\x12\xe1\x5d\xf1\x81\x56\xa0\xb2\x77\x63\x59\xc5\xdc\xa1\x4c\x08\x6c\xc5\x92\x7d\x7a\xfa\x95\xe3\x27\xee\x1e\x93\x15\x83\x67\x16\xb4\x25\x66\x2f\x73\x9b\x27\x6e\x09\x72\x8d\xc3\x51\x53\x1c\x58\xc5\xec\x62\x57\xc0\x08\xab\xe6\xf9\x6f\xfb\xf1\xb3\x36\xa5\x0d\x3b\x22\x3a\xa5\xf1\x43\xc9\xf5\x0d\xd3\x40\xba\x9e\xdb\x99\x73\xa1\xfc\xe3\xe7\x43\x50\x00\x3d\x4c\x19\x43\xb8\x5c\x54\x9d\xdc\xe9\xba\x32\x9b\x59\x6c\x13\x04\x19\xe9\x51\x61\x86\xbd\x29\x1d\x5c\x6a\xca\xc0\x65\x38\x3e\x5f\xf6\x41\xfe\xcb\xad\x19\x59\xc2\x6b\x1c\x78\xa5\x63\xeb\xd1\x2a\xc2\x65\x3a\x7d\xc8\x0f\x00\x93\x78\xf2\x7c\x39\xce\xba\xb3\x81"[..];
        let inv = &b"\x9c\xa9\x1f\x96\x80\x62\x7f\xb0\xfe\x26\xa8\x82\xfe\x57\x14\xd0\xcc\x9f\xb1\xdd\xf8\x36\xcb\xd8\x25\x6d\x45\xd3\x99\xfb\x85\x2f\x57\x70\x84\xc8\xfd\x12\x52\x2c\xf1\x32\xac\x4c\x25\x02\x17\xed\xf2\x2e\xac\x23\xdd\xec\x9b\xed\x3f\xf6\xb0\xc4\x99\xef\x14\xac\xcd\x4a\x30\xa8\xc5\xff\x47\x8e\x28\xfa\x99\x41\x1c\x4f\xc0\xdd\x59\x1d\x26\x94\x76\x9a\x0b\x64\x7f\xc1\x6f\xf8\x99\x5e\x19\xe3\x70\x43\x9b\x27\x58\x7e\x24\x15\x34\x4f\x2b\x74\x31\xa0\xc9\x41\x20\x41\x57\x44\x62\x04\xd9\xf0\x29\xb4\x43\x34\x4d\x09\xbe\xd3"[..];
        let dp = &b"\xd7\x10\xa0\x21\x4a\xd6\x72\xf9\x32\xf0\x7e\xf2\x19\x8a\xb9\xba\x6b\x9e\x01\x37\x99\x58\xf7\x8f\x49\x15\x98\x99\x10\x83\xfd\x3b\xb4\xa9\xb8\xca\xf2\x43\xb4\x7f\xd0\xf5\x8c\x15\xda\x63\xdd\x1a\x03\xe0\x9f\xbc\xe5\x41\x7f\x7d\x05\x12\x6b\x62\x99\x26\x83\x28\x10\xbe\xb8\x42\x18\x6a\x47\x6c\x8a\xd9\xdd\x85\x22\xa4\xfb\x4c\xae\x2d\xcc\xdb\x03\x1d\x04\x6b\x85\x3d\xe1\x91\x5e\x2c\xf3\x8e\x5c\xc8\xf7\x29\xc3\x40\x17\x4d\xb1\x5e\x96\xe2\xf9\xd3\x3c\x2c\x61\x82\x1d\x41\x46\x8e\x2c\xef\xf2\x09\xa6\x48\x14\xdd\x41\x3d"[..];
        let dq = &b"\x3d\x1d\xbe\x4d\xc7\x16\xf5\x59\xf3\x11\x89\xa6\xc4\xdb\xe4\xee\x9f\xcc\x3b\x65\x56\xa0\xe6\x0a\xd8\xde\xcb\x5f\x11\xf5\xcd\x05\x53\x8e\x15\x55\x01\x23\xed\x8a\x40\x79\x04\xfc\xbd\xff\x7a\x22\x7d\xe2\x17\xaf\xe3\x76\x20\x98\xd9\x3c\x73\xde\xd8\x95\x79\xea\x8f\x1c\xae\xde\xa8\x3f\xf2\xdc\x34\x0c\x33\xda\xac\xa6\x9b\xc9\xb1\xd2\xd3\x31\x48\x3e\xd3\x3d\x72\x68\x6a\xea\x86\xc2\x78\x57\xa8\xac\x84\xe7\xf1\x64\x27\x36\xaf\xce\x69\x5c\xd2\x46\x89\x0a\x60\xe3\x36\x37\xcf\x1e\x28\xfe\xc8\xfd\x3d\x84\xc2\xe5\x63\xc1"[..];
        let n = &b"\xcc\xc3\x86\x4e\x2b\x3d\x2d\x08\x89\x66\x90\x49\x75\x4f\xb8\x53\xa0\xbe\x04\xd0\x74\x49\x85\xe8\xc7\xf3\x84\x3b\xce\xa0\x12\xc2\x2a\x19\x18\x94\x6e\xda\x69\xb1\x1b\xed\x91\x96\xba\xb2\x58\x0f\x4c\xa6\x5f\xd3\x49\x08\xc5\x40\x58\xe9\xd1\x7a\xb0\x57\xed\x75\xad\xef\x51\x71\x5a\x8d\x9d\x43\x04\x32\x36\xff\xc1\x1f\xf8\x89\x95\x7d\x92\xcd\x72\x60\xb0\xa1\xe6\x20\x63\x1e\x03\x4b\x07\x48\x2d\xd6\xe5\xf6\xad\x30\xa9\x87\x81\x2a\x82\x00\x03\x9f\x53\x05\x71\x11\x65\xf0\xf8\xa8\x6e\xe7\x31\xb8\xd1\xf0\x58\xae\xad\x69\x72\x36\x80\x3b\xdd\x03\x8c\xa6\xc4\xf6\x22\xd7\xd4\x58\x92\xbc\xa0\x26\xd8\xd9\x49\xbe\xfe\x80\x35\x88\x02\xff\x7a\x5a\x40\xc2\xc6\x72\xa9\x3c\xf3\xf0\x61\x60\x45\x3c\xf7\xa1\x96\x66\x54\xde\x9d\xd0\xcb\xeb\xa7\x81\x3b\xda\x29\x0f\xbe\x03\xb0\xfe\xcc\xaf\x19\xdd\xcd\x15\x86\x49\xf8\xc0\xa5\x08\x3b\x2a\x42\x3d\xe2\x00\x33\x6c\x40\x70\x8c\xfc\x4a\x3e\x83\x1e\x7a\x53\x0c\x07\x0f\xc6\xfd\x31\xd5\xf8\x1e\xa7\x73\x47\x67\xf5\x76\x0a\xb1\x02\xa4\xd0\xcb\x79\xb2\xeb\x9c\x93\xa0\x6b\x23\xd2\xa7\x5b\xbb\x40\xa0\x95"[..];
        let e = &b"\x01\x00\x01"[..];

        assert!(PrivateKey::new(d, p, q, None).is_ok());
        assert!(PrivateKey::new(d, p, q, inv).is_ok());
        assert!(PrivateKey::new_crt(dp, dq, p, q, None).is_ok());
        assert!(PrivateKey::new_crt(dp, dq, p, q, inv).is_ok());

        let key1 = PrivateKey::new(d, p, q, None).unwrap();
        assert_eq!(&(*key1.d())[..], d);

        let (p1, q1) = key1.primes();
        assert_eq!(&(*p1)[..], p);
        assert_eq!(&(*q1)[..], q);

        let key2 = PrivateKey::new_crt(dp, dq, p, q, None).unwrap();
        let (dp1, dq1, inv1) = key2.d_crt();
        assert_eq!(&(*dp1)[..], dp);
        assert_eq!(&(*dq1)[..], dq);
        assert_eq!(&(*inv1)[..], inv);

        let (p2, q2) = key2.primes();
        assert_eq!(&(*p2)[..], p);
        assert_eq!(&(*q2)[..], q);

        let pubkey1 = key1.public_key().unwrap();
        assert_eq!(&pubkey1.n()[..], n);
        assert_eq!(&pubkey1.e()[..], e);

        assert!(key2.public_key().is_err());
    }

    #[test]
    fn generate_keypairs() {
        use crate::random::Yarrow;

        let mut rng = Yarrow::default();
        assert!(generate_keypair(&mut rng, 1024).is_ok());
        assert!(generate_keypair(&mut rng, 2048).is_ok());
        assert!(generate_keypair(&mut rng, 4096).is_ok());
    }

    #[test]
    fn clone() {
        use crate::random::Yarrow;

        let mut rng = Yarrow::default();
        let (public, private) = generate_keypair(&mut rng, 1024).unwrap();
        let _ = public.clone();
        let _ = private.clone();
    }
}