1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
use nettle_sys::{
    nettle_twofish_decrypt, nettle_twofish_encrypt, nettle_twofish_set_key,
    twofish_ctx,
};
use std::cmp::min;
use std::mem::zeroed;
use std::os::raw::c_void;

use crate::cipher::RawCipherFunctionPointer;
use crate::{cipher::Cipher, Result};

/// The Twofish block cipher.
pub struct Twofish {
    context: twofish_ctx,
}

impl Twofish {
    /// Creates a new instance with `key` that can be used for both encryption and decryption.
    pub fn with_key(key: &[u8]) -> Self {
        let mut ctx = unsafe { zeroed() };
        unsafe {
            nettle_twofish_set_key(&mut ctx as *mut _, key.len(), key.as_ptr());
        }

        Twofish { context: ctx }
    }
}

impl Cipher for Twofish {
    const BLOCK_SIZE: usize = ::nettle_sys::TWOFISH_BLOCK_SIZE as usize;
    const KEY_SIZE: usize = ::nettle_sys::TWOFISH_KEY_SIZE as usize;

    fn with_encrypt_key(key: &[u8]) -> Result<Twofish> {
        Ok(Twofish::with_key(key))
    }

    fn with_decrypt_key(key: &[u8]) -> Result<Twofish> {
        Ok(Twofish::with_key(key))
    }

    fn encrypt(&mut self, dst: &mut [u8], src: &[u8]) {
        unsafe {
            nettle_twofish_encrypt(
                &mut self.context as *mut _,
                min(src.len(), dst.len()),
                dst.as_mut_ptr(),
                src.as_ptr(),
            )
        };
    }

    fn decrypt(&mut self, dst: &mut [u8], src: &[u8]) {
        unsafe {
            nettle_twofish_decrypt(
                &mut self.context as *mut _,
                min(src.len(), dst.len()),
                dst.as_mut_ptr(),
                src.as_ptr(),
            )
        };
    }

    fn context(&mut self) -> *mut c_void {
        ((&mut self.context) as *mut twofish_ctx) as *mut c_void
    }

    fn raw_encrypt_function() -> RawCipherFunctionPointer {
        RawCipherFunctionPointer::new(nettle_twofish_encrypt)
    }

    fn raw_decrypt_function() -> RawCipherFunctionPointer {
        RawCipherFunctionPointer::new(nettle_twofish_decrypt)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn set_key() {
        let key = &(b"\x01\x02\x03\x04\x05\x06\x07\x08\x01\x02\x03\x04\x05\x06\x07\x08"[..]);
        let _ = Twofish::with_encrypt_key(key).unwrap();
        let _ = Twofish::with_decrypt_key(key).unwrap();
    }

    #[test]
    fn round_trip() {
        let key = vec![
            0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x01, 0x02, 0x03,
            0x04, 0x05, 0x06, 0x07, 0x08,
        ];
        let input = vec![
            0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x10, 0x11,
            0x12, 0x13, 0x14, 0x15, 0x16,
        ];
        let mut cipher = vec![0; 16];
        let mut output = vec![0; 16];

        let mut enc = Twofish::with_encrypt_key(&key).unwrap();
        let mut dec = Twofish::with_decrypt_key(&key).unwrap();

        enc.encrypt(&mut cipher, &input);
        dec.decrypt(&mut output, &cipher);

        assert_eq!(output, input);
    }
}