1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
use core::ops::Range;

use anyhow::Context;
use byteorder::{ByteOrder, NativeEndian};

use crate::{
    traits::{Emitable, Parseable},
    DecodeError,
};

/// Represent a multi-bytes field with a fixed size in a packet
type Field = Range<usize>;

/// Identify the bits that represent the "nested" flag of a netlink attribute.
pub const NLA_F_NESTED: u16 = 0x8000;
/// Identify the bits that represent the "byte order" flag of a netlink attribute.
pub const NLA_F_NET_BYTEORDER: u16 = 0x4000;
/// Identify the bits that represent the type of a netlink attribute.
pub const NLA_TYPE_MASK: u16 = !(NLA_F_NET_BYTEORDER | NLA_F_NESTED);

const LENGTH: Field = 0..2;
const TYPE: Field = 2..4;
#[allow(non_snake_case)]
fn VALUE(length: usize) -> Field {
    TYPE.end..TYPE.end + length
}

// with Copy, NlaBuffer<&'buffer T> can be copied, which turns out to be pretty conveninent. And since it's
// boils down to copying a reference it's pretty cheap
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct NlaBuffer<T: AsRef<[u8]>> {
    buffer: T,
}

impl<T: AsRef<[u8]>> NlaBuffer<T> {
    pub fn new(buffer: T) -> NlaBuffer<T> {
        NlaBuffer { buffer }
    }

    pub fn new_checked(buffer: T) -> Result<NlaBuffer<T>, DecodeError> {
        let buffer = Self::new(buffer);
        buffer.check_buffer_length().context("invalid NLA buffer")?;
        Ok(buffer)
    }

    pub fn check_buffer_length(&self) -> Result<(), DecodeError> {
        let len = self.buffer.as_ref().len();
        if len < TYPE.end {
            Err(format!(
                "buffer has length {}, but an NLA header is {} bytes",
                len, TYPE.end
            )
            .into())
        } else if len < self.length() as usize {
            Err(format!(
                "buffer has length: {}, but the NLA is {} bytes",
                len,
                self.length()
            )
            .into())
        } else if (self.length() as usize) < TYPE.end {
            Err(format!(
                "NLA has invalid length: {} (should be at least {} bytes",
                self.length(),
                TYPE.end,
            )
            .into())
        } else {
            Ok(())
        }
    }

    /// Consume the buffer, returning the underlying buffer.
    pub fn into_inner(self) -> T {
        self.buffer
    }

    /// Return a reference to the underlying buffer
    pub fn inner(&mut self) -> &T {
        &self.buffer
    }

    /// Return a mutable reference to the underlying buffer
    pub fn inner_mut(&mut self) -> &mut T {
        &mut self.buffer
    }

    /// Return the `type` field
    pub fn kind(&self) -> u16 {
        let data = self.buffer.as_ref();
        NativeEndian::read_u16(&data[TYPE]) & NLA_TYPE_MASK
    }

    pub fn nested_flag(&self) -> bool {
        let data = self.buffer.as_ref();
        (NativeEndian::read_u16(&data[TYPE]) & NLA_F_NESTED) != 0
    }

    pub fn network_byte_order_flag(&self) -> bool {
        let data = self.buffer.as_ref();
        (NativeEndian::read_u16(&data[TYPE]) & NLA_F_NET_BYTEORDER) != 0
    }

    /// Return the `length` field. The `length` field corresponds to the length of the nla
    /// header (type and length fields, and the value field). However, it does not account for the
    /// potential padding that follows the value field.
    pub fn length(&self) -> u16 {
        let data = self.buffer.as_ref();
        NativeEndian::read_u16(&data[LENGTH])
    }

    /// Return the length of the `value` field
    ///
    /// # Panic
    ///
    /// This panics if the length field value is less than the attribut header size.
    pub fn value_length(&self) -> usize {
        self.length() as usize - TYPE.end
    }
}

impl<T: AsRef<[u8]> + AsMut<[u8]>> NlaBuffer<T> {
    /// Set the `type` field
    pub fn set_kind(&mut self, kind: u16) {
        let data = self.buffer.as_mut();
        NativeEndian::write_u16(&mut data[TYPE], kind & NLA_TYPE_MASK)
    }

    pub fn set_nested_flag(&mut self) {
        let kind = self.kind();
        let data = self.buffer.as_mut();
        NativeEndian::write_u16(&mut data[TYPE], kind | NLA_F_NESTED)
    }

    pub fn set_network_byte_order_flag(&mut self) {
        let kind = self.kind();
        let data = self.buffer.as_mut();
        NativeEndian::write_u16(&mut data[TYPE], kind | NLA_F_NET_BYTEORDER)
    }

    /// Set the `length` field
    pub fn set_length(&mut self, length: u16) {
        let data = self.buffer.as_mut();
        NativeEndian::write_u16(&mut data[LENGTH], length)
    }
}

impl<'buffer, T: AsRef<[u8]> + ?Sized> NlaBuffer<&'buffer T> {
    /// Return the `value` field
    pub fn value(&self) -> &[u8] {
        &self.buffer.as_ref()[VALUE(self.value_length())]
    }
}

impl<'buffer, T: AsRef<[u8]> + AsMut<[u8]> + ?Sized> NlaBuffer<&'buffer mut T> {
    /// Return the `value` field
    pub fn value_mut(&mut self) -> &mut [u8] {
        let length = VALUE(self.value_length());
        &mut self.buffer.as_mut()[length]
    }
}

#[derive(Debug, PartialEq, Eq, Clone)]
pub struct DefaultNla {
    kind: u16,
    value: Vec<u8>,
}

impl Nla for DefaultNla {
    fn value_len(&self) -> usize {
        self.value.len()
    }
    fn kind(&self) -> u16 {
        self.kind
    }
    fn emit_value(&self, buffer: &mut [u8]) {
        buffer.copy_from_slice(self.value.as_slice());
    }
}

impl<'buffer, T: AsRef<[u8]> + ?Sized> Parseable<NlaBuffer<&'buffer T>> for DefaultNla {
    fn parse(buf: &NlaBuffer<&'buffer T>) -> Result<Self, DecodeError> {
        let mut kind = buf.kind();

        if buf.network_byte_order_flag() {
            kind |= NLA_F_NET_BYTEORDER;
        }

        if buf.nested_flag() {
            kind |= NLA_F_NESTED;
        }

        Ok(DefaultNla {
            kind,
            value: buf.value().to_vec(),
        })
    }
}

pub trait Nla {
    fn value_len(&self) -> usize;
    fn kind(&self) -> u16;
    fn emit_value(&self, buffer: &mut [u8]);

    #[inline]
    fn is_nested(&self) -> bool {
        (self.kind() & NLA_F_NESTED) != 0
    }

    #[inline]
    fn is_network_byteorder(&self) -> bool {
        (self.kind() & NLA_F_NET_BYTEORDER) != 0
    }
}

impl<T: Nla> Emitable for T {
    fn buffer_len(&self) -> usize {
        let padding = (4 - self.value_len() % 4) % 4;
        self.value_len() + padding + 4
    }
    fn emit(&self, buffer: &mut [u8]) {
        let mut buffer = NlaBuffer::new(buffer);
        buffer.set_kind(self.kind());

        if self.is_network_byteorder() {
            buffer.set_network_byte_order_flag()
        }

        if self.is_nested() {
            buffer.set_nested_flag()
        }

        // do not include the padding here, but do include the header
        buffer.set_length(self.value_len() as u16 + 4);

        self.emit_value(buffer.value_mut());
        // add the padding. this is a bit ugly, not sure how to make it better
        let padding = (4 - self.value_len() % 4) % 4;
        for i in 0..padding {
            buffer.inner_mut()[4 + self.value_len() + i] = 0;
        }
    }
}

// FIXME: whern specialization lands, why can actually have
//
// impl<'a, T: Nla, I: Iterator<Item=T>> Emitable for I { ...}
//
// The reason this does not work today is because it conflicts with
//
// impl<T: Nla> Emitable for T { ... }
impl<'a, T: Nla> Emitable for &'a [T] {
    fn buffer_len(&self) -> usize {
        self.iter().fold(0, |acc, nla| {
            assert_eq!(nla.buffer_len() % 4, 0);
            acc + nla.buffer_len()
        })
    }

    fn emit(&self, buffer: &mut [u8]) {
        let mut start = 0;
        let mut end: usize;
        for nla in self.iter() {
            let attr_len = nla.buffer_len();
            assert_eq!(nla.buffer_len() % 4, 0);
            end = start + attr_len;
            nla.emit(&mut buffer[start..end]);
            start = end;
        }
    }
}

/// An iterator that iteratates over nlas without decoding them. This is useful when looking
/// for specific nlas.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct NlasIterator<T> {
    position: usize,
    buffer: T,
}

impl<T> NlasIterator<T> {
    pub fn new(buffer: T) -> Self {
        NlasIterator {
            position: 0,
            buffer,
        }
    }
}

impl<'buffer, T: AsRef<[u8]> + ?Sized + 'buffer> Iterator for NlasIterator<&'buffer T> {
    type Item = Result<NlaBuffer<&'buffer [u8]>, DecodeError>;

    fn next(&mut self) -> Option<Self::Item> {
        // Nlas are aligned on 4 bytes boundaries, so we make sure we ignore any potential
        // padding.
        let offset = self.position % 4;
        if offset != 0 {
            self.position += 4 - offset;
        }

        if self.position >= self.buffer.as_ref().len() {
            return None;
        }

        match NlaBuffer::new_checked(&self.buffer.as_ref()[self.position..]) {
            Ok(nla_buffer) => {
                self.position += nla_buffer.length() as usize;
                Some(Ok(nla_buffer))
            }
            Err(e) => {
                // Make sure next time we call `next()`, we return None. We don't try to continue
                // iterating after we failed to return a buffer.
                self.position = self.buffer.as_ref().len();
                Some(Err(e))
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn network_byteorder() {
        // The IPSET_ATTR_TIMEOUT attribute should have the network byte order flag set.
        // IPSET_ATTR_TIMEOUT(3600)
        static TEST_ATTRIBUTE: &[u8] = &[0x08, 0x00, 0x06, 0x40, 0x00, 0x00, 0x0e, 0x10];
        let buffer = NlaBuffer::new(TEST_ATTRIBUTE);
        let buffer_is_net = buffer.network_byte_order_flag();
        let buffer_is_nest = buffer.nested_flag();

        let nla = DefaultNla::parse(&buffer).unwrap();
        let mut emitted_buffer = vec![0; nla.buffer_len()];

        nla.emit(&mut emitted_buffer);

        let attr_is_net = nla.is_network_byteorder();
        let attr_is_nest = nla.is_nested();

        let emit = NlaBuffer::new(emitted_buffer);
        let emit_is_net = emit.network_byte_order_flag();
        let emit_is_nest = emit.nested_flag();

        assert_eq!([buffer_is_net, buffer_is_nest], [attr_is_net, attr_is_nest]);
        assert_eq!([attr_is_net, attr_is_nest], [emit_is_net, emit_is_nest]);
    }
}