1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
//! A two dimensional collection whose purpose it to reduce heap allocations.
//!
//! This crate is intended to be used when:
//! - you want a potentially large:
//!   - `Vec<String>`
//!   - `Vec<Vec<T>>`
//!   - `Vec<C>` where `C` is heap allocated, dynamically sized and can implement `Collection` trait
//! - you actually only need to use borrowed items (`&[T]` or `&str`)
//!
//! Instead of having n + 1 allocations, you'll only have 2.
//!
//! # Example
//!
//! ```rust
//! use nested::Nested;
//!
//! let mut v = Nested::<String>::new();
//!
//! // you can either populate it one by one
//! v.push("a");
//! v.push("bb".to_string());
//! v.push("hhh");
//! v.extend(vec!["iiiiii".to_string(), "jjjj".to_string()]);
//! assert_eq!(v.len(), 5);
//! assert_eq!(&v[0], "a");
//! assert_eq!(&v[1], "bb");
//!
//! // or you can directly collect it
//! let mut v = ["a", "b", "c", "d", "e", "f", "g"].iter().collect::<Nested<String>>();
//! assert_eq!(v.len(), 7);
//!
//! // it also provides basic operations
//! let u = v.split_off(2);
//! assert_eq!(u.get(0), Some("c"));
//!
//! v.truncate(1);
//! assert_eq!(v.pop(), Some("a".to_string()));
//! assert_eq!(v.pop(), None);
//! ```
use std::iter::{repeat, FromIterator};
use std::ops::{Index, Range};

/// A `Nested` item when `T: Collection`
pub type Item<T> = <T as Index<Range<usize>>>::Output;
/// A `Nested<String>`
pub type ZString = Nested<String>;
/// A `Nested<Vec<T>>`
pub type ZVec<T> = Nested<Vec<T>>;

/// A `Collection` trait to expose basic required fn for `Nested` to work properly
pub trait Collection: Index<Range<usize>> {
    fn new() -> Self;
    fn with_capacity(cap: usize) -> Self;
    fn len(&self) -> usize;
    fn truncate(&mut self, len: usize);
    fn extend_from_slice(&mut self, s: &<Self as Index<Range<usize>>>::Output);
    fn split_off(&mut self, at: usize) -> Self;
}

impl<T: Clone> Collection for Vec<T> {
    fn len(&self) -> usize {
        self.len()
    }
    fn new() -> Self {
        Vec::new()
    }
    fn with_capacity(cap: usize) -> Self {
        Vec::with_capacity(cap)
    }
    fn truncate(&mut self, len: usize) {
        self.truncate(len);
    }
    fn extend_from_slice(&mut self, s: &<Self as Index<Range<usize>>>::Output) {
        Vec::extend_from_slice(self, s)
    }
    fn split_off(&mut self, at: usize) -> Self {
        self.split_off(at)
    }
}

impl Collection for String {
    fn len(&self) -> usize {
        self.len()
    }
    fn new() -> Self {
        String::new()
    }
    fn with_capacity(cap: usize) -> Self {
        String::with_capacity(cap)
    }
    fn truncate(&mut self, len: usize) {
        self.truncate(len);
    }
    fn extend_from_slice(&mut self, s: &<Self as Index<Range<usize>>>::Output) {
        self.push_str(s)
    }
    fn split_off(&mut self, at: usize) -> Self {
        self.split_off(at)
    }
}

/// A two dimensional collection with minimal allocation
///
/// `T` is the owning underlying container.
///
/// For instance, it behaves similarly to `Vec<Vec<T>>` or `Vec<String>` but
/// only has 2 internal buffers.
///
/// It can be used:
/// - on your own collection as long as it implements the `Collection` trait.
/// - like a sparse vector
/// - when you need to collect (move ownership) many `String`s or `Vec<T>`s
#[derive(Debug, Clone, PartialEq, Hash, Eq)]
pub struct Nested<T> {
    indices: Vec<usize>,
    data: T,
}

impl<T: Collection> Nested<T> {
    /// Create a new `Nested`.
    pub fn new() -> Self {
        Nested {
            indices: vec![0],
            data: T::new(),
        }
    }

    /// Creates a new `Nested` with given capacity.
    ///
    /// len: the expected item count
    /// size: the expected total size taken by all items
    pub fn with_capacity(len: usize, size: usize) -> Self {
        let mut indices = Vec::with_capacity(len + 1);
        indices.push(0);
        Nested {
            indices: indices,
            data: T::with_capacity(size),
        }
    }

    /// Pushes a new item
    pub fn push<I: AsRef<Item<T>>>(&mut self, el: I) {
        self.data.extend_from_slice(el.as_ref());
        let len = self.data.len();
        self.indices.push(len);
    }

    /// Removes the last element from a `Nested` and returns it, or None if it is empty.
    pub fn pop(&mut self) -> Option<T> {
        if self.indices.len() > 1 {
            let l = self.indices[self.indices.len() - 2];
            let data = self.data.split_off(l);
            self.indices.pop();
            Some(data)
        } else {
            None
        }
    }

    /// Extend with `count` empty elements
    pub fn extend_empty(&mut self, count: usize) {
        let len = self.data.len();
        self.indices.extend(repeat(len).take(count));
    }

    /// Returns the number of elements in the `Nested`.
    #[inline]
    pub fn len(&self) -> usize {
        self.indices.len() - 1
    }

    /// Get the total length taken by the data
    #[inline]
    pub fn data_len(&self) -> usize {
        self.data.len()
    }

    /// Returns true if self has a length of zero.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Shortens the `Nested`, keeping the first len elements and dropping the rest.
    ///
    /// If len is greater than the vector's current length, this has no effect.
    ///
    /// Note that this method has no effect on the allocated capacity of the vector.
    pub fn truncate(&mut self, len: usize) {
        if len + 1 >= self.indices.len() {
            return;
        }

        let size = self.indices[len];
        self.indices.truncate(len + 1);
        self.data.truncate(size);
    }

    /// Truncates this `Nested`, removing all contents.
    ///
    /// While this means the `Nested` will have a length of zero, it does not touch its capacity.
    #[inline]
    pub fn clear(&mut self) {
        self.indices.truncate(1);
        self.data.truncate(0);
    }

    /// Returns a shared reference to the output at this location, if in bounds.
    pub fn get(&self, index: usize) -> Option<&Item<T>> {
        if index >= self.len() {
            None
        } else {
            Some(&self[index])
        }
    }

    /// Converts this `Nested` into its constituent parts.
    pub fn into_parts(self) -> (Vec<usize>, T) {
        (self.indices, self.data)
    }

    /// Returns a reference to the underlying indices.
    ///
    /// Each index represents the start of each logical vector beyond the first one.
    pub fn indices(&self) -> &[usize] {
        &self.indices
    }

    /// Returns a reference to the underlying data.
    ///
    /// The data is stored contiguously.
    pub fn data(&self) -> &T {
        &self.data
    }

    /// Returns an iterator over `Nested` elements.
    pub fn iter(&self) -> Iter<T> {
        Iter {
            windows: self.indices.windows(2),
            data: &self.data,
        }
    }

    /// Splits the collection into two at the given index.
    ///
    /// Returns a newly allocated Self. self contains elements [0, at), and the returned Self
    /// contains elements [at, len).
    ///
    /// Note that the capacity of self does not change.
    pub fn split_off(&mut self, at: usize) -> Nested<T> {
        if at == self.len() {
            return Nested::new();
        }
        assert!(at < self.len());
        let mut new_indices = self.indices.split_off(at + 1);
        let offset = self.indices[at];
        let new_data = self.data.split_off(offset);
        for i in &mut new_indices {
            *i -= offset;
        }
        new_indices.insert(0, 0);
        Nested {
            indices: new_indices,
            data: new_data,
        }
    }
}

impl<T: Collection> Index<usize> for Nested<T> {
    type Output = Item<T>;
    fn index(&self, index: usize) -> &Self::Output {
        assert!(index + 1 <= self.indices.len());
        let lo = self.indices[index];
        let hi = self.indices[index + 1];
        &self.data.index(lo..hi)
    }
}

impl<T: Collection, A: AsRef<Item<T>>> Extend<A> for Nested<T> {
    fn extend<I>(&mut self, iter: I)
    where
        I: IntoIterator,
        I::Item: AsRef<Item<T>>,
    {
        for i in iter.into_iter() {
            self.push(i);
        }
    }
}

/// An iterator over `Nested` elements
#[derive(Debug, Clone)]
pub struct Iter<'a, T: 'a> {
    windows: ::std::slice::Windows<'a, usize>,
    data: &'a T,
}

impl<'a, T: Collection> Iterator for Iter<'a, T> {
    type Item = &'a Item<T>;
    fn next(&mut self) -> Option<Self::Item> {
        self.windows.next().map(|w| self.data.index(w[0]..w[1]))
    }
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.windows.size_hint()
    }
}

impl<'a, T: Collection> ExactSizeIterator for Iter<'a, T> {
    fn len(&self) -> usize {
        self.windows.len()
    }
}

impl<'a, T: Collection> DoubleEndedIterator for Iter<'a, T> {
    fn next_back(&mut self) -> Option<<Self as Iterator>::Item> {
        self.windows
            .next_back()
            .map(|w| self.data.index(w[0]..w[1]))
    }
}

impl<T: Collection, A: AsRef<Item<T>>> FromIterator<A> for Nested<T> {
    fn from_iter<I: IntoIterator<Item = A>>(iter: I) -> Self {
        let iter = iter.into_iter();
        let mut v = match iter.size_hint() {
            (0, None) => Nested::new(),
            (_, Some(l)) | (l, None) => Nested::with_capacity(l, l * 4),
        };
        v.extend(iter);
        v
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_string() {
        let mut v = Nested::<String>::new();
        v.push("aaa");
        v.push("bbb".to_string());
        assert_eq!(v.len(), 2);
        assert_eq!(&v[0], "aaa");
        assert_eq!(&v[1], "bbb");
        v.truncate(1);
        assert_eq!(v.len(), 1);
        assert_eq!(&v[0], "aaa");
        assert_eq!(v.get(1), None);
        v.extend_empty(3);
        assert_eq!(v.len(), 4);
        assert_eq!(&v[2], "");
    }

    #[test]
    fn test_vec() {
        let mut v = Nested::<Vec<_>>::new();
        v.push(&[1, 2, 3]);
        v.push(vec![1, 2, 4]);
        assert_eq!(v.len(), 2);
        assert_eq!(&v[0], &[1, 2, 3]);
        assert_eq!(&v[1], &[1, 2, 4]);
        v.truncate(1);
        assert_eq!(v.len(), 1);
        assert_eq!(&v[0], &[1, 2, 3]);
        assert_eq!(v.get(1), None);
        v.extend_empty(3);
        assert_eq!(v.len(), 4);
        assert_eq!(&v[2], &[]);
    }

    #[test]
    fn test_collect() {
        let sce = vec![
            "a".to_string(),
            "b".to_string(),
            "c".to_string(),
            "d".to_string(),
        ];
        let v = sce.iter().collect::<Nested<String>>();
        assert_eq!(v.len(), 4);
        assert_eq!(&v[0], "a");
        assert_eq!(&v[1], "b");
        assert_eq!(&v[2], "c");
        assert_eq!(&v[3], "d");

        let sce = vec!["a", "b", "c", "d"];
        let v2 = sce.iter().collect::<Nested<String>>();
        assert_eq!(v, v2);
    }

    #[test]
    fn test_iter() {
        let sce = vec![
            "a".to_string(),
            "b".to_string(),
            "c".to_string(),
            "d".to_string(),
        ];
        let v = sce.iter().collect::<Nested<String>>();
        let new_sce = v.iter().map(|s| s.to_string()).collect::<Vec<_>>();
        assert_eq!(sce, new_sce);
    }

    #[test]
    fn test_split_off() {
        let mut v = ["a", "b", "c", "d"].iter().collect::<Nested<String>>();
        assert_eq!(v.len(), 4);
        let u = v.split_off(2);
        assert_eq!(v.len(), 2);
        assert_eq!(u.len(), 2);
        assert!(v.iter().zip(["a", "b"].iter()).all(|(r, l)| l.eq(&r)));
        assert!(u.iter().zip(["c", "d"].iter()).all(|(r, l)| l.eq(&r)));
    }

    #[test]
    fn test_pop() {
        let mut v = ["a", "b", "c", "d"].iter().collect::<Nested<String>>();
        assert_eq!(v.len(), 4);
        assert_eq!(v.pop(), Some("d".to_string()));
        assert_eq!(v.len(), 3);
        assert_eq!(v.pop(), Some("c".to_string()));
        assert_eq!(v.len(), 2);
        assert_eq!(v.pop(), Some("b".to_string()));
        assert_eq!(v.len(), 1);
        assert_eq!(v.pop(), Some("a".to_string()));
        assert_eq!(v.len(), 0);
        assert_eq!(v.pop(), None);
        assert_eq!(v.len(), 0);
    }
}