1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
//! # Type safety for the weary netlink user
//!
//! ## Rationale
//!
//! This crate aims to be a pure Rust implementation that defines
//! the necessary constants and wraps them in enums to distinguish
//! between various categories of constants in the context of netlink.
//!
//! ## The project is broken down into the following modules:
//! * `attr` - This defines a generic interface for netlink attributes
//! (both generic and routing netlink attributes).
//! * `consts` - This is where all of the C-defined constants are
//! wrapped into type safe enums for use in the library.
//! * `err` - This module contains all of the protocol and
//! library-level errors encountered in the code.
//! * `genl` - This code provides parsing for the generic netlink
//! subsystem of the netlink protocol.
//! * `nl` - This is the top level netlink header code that handles
//! the header that all netlink messages are encapsulated in.
//! * `rtnl` - This module is for the routing netlink subsystem of the
//! netlink protocol.
//! * `socket` - This provides a socket structure for use in sending
//! and receiving messages and a number of convenience functions for
//! commonly encountered use cases.
//!
//! ## [`Nl`] trait
//!
//! `lib.rs` at the top level contains the [`Nl`] trait which
//! provides buffer size calculation functions, a serialization
//! method, and a deserialization method. It also contains
//! implementations of [`Nl`] for common types.
//!
//! ## Design decisions
//!
//! This is a fairly low level library that currently does not have a
//! whole lot of higher level handle-type data structures and
//! relies mostly on the [`NlSocket`][crate::socket::NlSocket] and
//! [`NlSocketHandle`][crate::socket::NlSocketHandle] structs
//! to provide most of the convenience functions. I hope to add a
//! higher level API sometime in the `v0.5.x` releases to ease some of
//! the workflows that have been brought to my attention.
//!
//! The goal of this library is completeness for handling netlink and
//! am working to incorporate features that will make this library
//! easier to use in all use cases. If you have a use case you
//! would like to see supported, please open an issue on Github.
//!
//! ## Examples
//!
//! Examples of working code exist in the `examples/` subdirectory on
//! Github. They have a separate `Cargo.toml` file to provide easy
//! testing and use.  
//!
//! Workflows seem to usually follow a pattern of socket creation,and
//! then either sending and receiving messages in request/response
//! formats:
//!
//! ```
//! use neli::{
//!     consts::{genl::*, nl::*, socket::*},
//!     err::NlError,
//!     genl::{Genlmsghdr, Nlattr},
//!     nl::{Nlmsghdr, NlPayload},
//!     socket::NlSocketHandle,
//!     types::{Buffer, GenlBuffer},
//!     utils::U32Bitmask,
//! };
//!
//! const GENL_VERSION: u8 = 1;
//!
//! fn request_response() -> Result<(), NlError> {
//!     let mut socket = NlSocketHandle::connect(
//!         NlFamily::Generic,
//!         None,
//!         U32Bitmask::empty(),
//!     )?;
//!
//!     let attrs: GenlBuffer<Index, Buffer> = GenlBuffer::new();
//!     let genlhdr = Genlmsghdr::new(
//!         CtrlCmd::Getfamily,
//!         GENL_VERSION,
//!         attrs,
//!     );
//!     let nlhdr = {
//!         let len = None;
//!         let nl_type = GenlId::Ctrl;
//!         let flags = NlmFFlags::new(&[NlmF::Request, NlmF::Dump]);
//!         let seq = None;
//!         let pid = None;
//!         let payload = NlPayload::Payload(genlhdr);
//!         Nlmsghdr::new(len, nl_type, flags, seq, pid, payload)
//!     };
//!     socket.send(nlhdr)?;
//!     
//!     // Do things with multi-message response to request...
//!     let mut iter = socket.iter::<Genlmsghdr<CtrlCmd, CtrlAttr>>(false);
//!     while let Some(Ok(response)) = iter.next() {
//!         // Do things with response here...
//!     }
//!     
//!     // Or get single message back...
//!     let msg = socket.recv::<Nlmsg, Genlmsghdr<CtrlCmd, CtrlAttr>>()?;
//!
//!     Ok(())
//! }
//! ```
//!
//! or a subscriptions to a stream of event notifications from netlink:
//!
//! ```
//! use std::error::Error;
//!
//! use neli::{
//!     consts::{genl::*, socket::*},
//!     err::NlError,
//!     genl::Genlmsghdr,
//!     socket,
//!     utils::{U32BitFlag, U32Bitmask},
//! };
//!
//! fn subscribe_to_mcast() -> Result<(), Box<dyn Error>> {
//!     let mut s = socket::NlSocketHandle::connect(
//!         NlFamily::Generic,
//!         None,
//!         U32Bitmask::empty(),
//!     )?;
//!     let id = s.resolve_nl_mcast_group(
//!         "my_family_name",
//!         "my_multicast_group_name",
//!     )?;
//!     s.add_mcast_membership(U32Bitmask::from(U32BitFlag::new(id)?))?;
//!     for next in s.iter::<Genlmsghdr<u8, u16>>(true) {
//!         // Do stuff here with parsed packets...
//!     
//!         // like printing a debug representation of them:
//!         println!("{:?}", next?);
//!     }
//!
//!     Ok(())
//! }
//! ```
//!
//! ## Documentation
//!
//! Each module has been documented extensively to provide information
//! on how to use the code contained in the module. Pull requests for
//! documentation mistakes, updates, and rewording for clarity is a
//! valuable contribution as this project aims to be as simple to use
//! as possible.

#![deny(missing_docs)]

#[macro_use]
mod macros;

pub mod attr;
pub mod consts;
pub mod err;
pub mod genl;
pub mod iter;
mod neli_constants;
pub mod nl;
mod parse;
pub mod rtnl;
pub mod socket;
pub mod types;
pub mod utils;

use std::{io::Write, mem, str};

use byteorder::ByteOrder;
#[cfg(feature = "logging")]
use lazy_static::lazy_static;
#[cfg(feature = "logging")]
use log::LevelFilter;
#[cfg(feature = "logging")]
use simple_logger::SimpleLogger;

pub use crate::neli_constants::MAX_NL_LENGTH;
use crate::{
    consts::alignto,
    err::{DeError, SerError, WrappedError},
    types::{Buffer, DeBuffer, SerBuffer},
};

#[cfg(feature = "logging")]
lazy_static! {
    static ref LOGGING_INITIALIZED: bool = SimpleLogger::new()
        .with_level(LevelFilter::Debug)
        .init()
        .is_ok();
    static ref SHOW_LOGS: bool = std::env::var("NELI_LOG").is_ok();
}

/// Logging mechanism for neli for debugging
#[cfg(feature = "logging")]
#[macro_export]
macro_rules! log {
    ($fmt:tt, $($args:expr),*) => {
        if *$crate::LOGGING_INITIALIZED && *$crate::SHOW_LOGS {
            log::debug!(concat!($fmt, "\n{}"), $($args),*, ["-"; 80].join(""));
        } else {
            println!(concat!($fmt, "\n{}"), $($args),*, ["-"; 80].join(""));
        }
    }
}

/// Trait defining basic actions required for netlink communication.
/// Implementations for basic and `neli`'s types are provided (see below). Create new
/// implementations if you have to work with a Netlink API that uses
/// values of more unusual types.
pub trait Nl: Sized {
    /// Serialization method
    fn serialize(&self, m: SerBuffer) -> Result<(), SerError>;

    /// Deserialization method
    fn deserialize(m: DeBuffer) -> Result<Self, DeError>;

    /// The size of the binary representation of a type not aligned
    /// to 4-byte boundary size
    fn type_size() -> Option<usize>;

    /// The size of the binary representation of a type not aligned
    /// to 4-byte boundary size
    fn type_asize() -> Option<usize> {
        Self::type_size().map(alignto)
    }

    /// The size of the binary representation of an existing value
    /// not aligned to 4-byte boundary size
    fn size(&self) -> usize;

    /// The size of the binary representation of an existing value
    /// aligned to 4-byte boundary size
    fn asize(&self) -> usize {
        alignto(self.size())
    }

    /// Pad the data serialized data structure to alignment
    fn pad(&self, mem: SerBuffer) -> Result<(), SerError> {
        let padding_len = self.asize() - self.size();
        if let Err(e) = mem
            .as_mut()
            .write_all(&[0; libc::NLA_ALIGNTO as usize][..padding_len])
        {
            Err(SerError::Wrapped(WrappedError::IOError(e)))
        } else {
            Ok(())
        }
    }
}

impl Nl for u8 {
    fn serialize(&self, mem: SerBuffer) -> Result<(), SerError> {
        let size = self.size();
        match mem.len() {
            i if i < size => return Err(SerError::UnexpectedEOB),
            i if i > size => return Err(SerError::BufferNotFilled),
            _ => (),
        };
        let _ = mem.as_mut().write(&[*self]);
        Ok(())
    }

    fn deserialize(mem: DeBuffer) -> Result<Self, DeError> {
        let size = Self::type_size().expect("Integers have static size");
        match mem.len() {
            i if i < size => return Err(DeError::UnexpectedEOB),
            i if i > size => return Err(DeError::BufferNotParsed),
            _ => (),
        };
        Ok(*mem.as_ref().get(0).expect("Length already checked"))
    }

    fn size(&self) -> usize {
        mem::size_of::<u8>()
    }

    fn type_size() -> Option<usize> {
        Some(mem::size_of::<u8>())
    }
}

impl Nl for u16 {
    fn serialize(&self, mem: SerBuffer) -> Result<(), SerError> {
        put_int!(*self, mem, write_u16);
        Ok(())
    }

    fn deserialize(mem: DeBuffer) -> Result<Self, DeError> {
        Ok(get_int!(mem, read_u16))
    }

    fn size(&self) -> usize {
        mem::size_of::<u16>()
    }

    fn type_size() -> Option<usize> {
        Some(mem::size_of::<u16>())
    }
}

impl Nl for u32 {
    fn serialize(&self, mem: SerBuffer) -> Result<(), SerError> {
        put_int!(*self, mem, write_u32);
        Ok(())
    }

    fn deserialize(mem: DeBuffer) -> Result<Self, DeError> {
        Ok(get_int!(mem, read_u32))
    }

    fn size(&self) -> usize {
        mem::size_of::<u32>()
    }

    fn type_size() -> Option<usize> {
        Some(mem::size_of::<u32>())
    }
}

impl Nl for i32 {
    fn serialize(&self, mem: SerBuffer) -> Result<(), SerError> {
        put_int!(*self, mem, write_i32);
        Ok(())
    }

    fn deserialize(mem: DeBuffer) -> Result<Self, DeError> {
        Ok(get_int!(mem, read_i32))
    }

    fn size(&self) -> usize {
        mem::size_of::<i32>()
    }

    fn type_size() -> Option<usize> {
        Some(mem::size_of::<i32>())
    }
}

impl Nl for u64 {
    fn serialize(&self, mem: SerBuffer) -> Result<(), SerError> {
        put_int!(*self, mem, write_u64);
        Ok(())
    }

    fn deserialize(mem: DeBuffer) -> Result<Self, DeError> {
        Ok(get_int!(mem, read_u64))
    }

    fn size(&self) -> usize {
        mem::size_of::<u64>()
    }

    fn type_size() -> Option<usize> {
        Some(mem::size_of::<u64>())
    }
}

/// A `u64` data type that will always be serialized as big endian
#[derive(Copy, Debug, Clone)]
pub struct BeU64(u64);

impl BeU64 {
    /// Create a big endian `u64` type from a native endian `u64`
    pub fn new(v: u64) -> Self {
        BeU64(v)
    }

    /// As native endian `u64`
    pub fn as_ne_u64(self) -> u64 {
        self.0
    }
}

impl Nl for BeU64 {
    fn serialize(&self, mem: SerBuffer) -> Result<(), SerError> {
        put_int!(self.0, mem, write_u64, byteorder::BE);
        Ok(())
    }

    fn deserialize(mem: DeBuffer) -> Result<Self, DeError> {
        Ok(BeU64(get_int!(mem, read_u64, byteorder::BE)))
    }

    fn size(&self) -> usize {
        self.0.size()
    }

    fn type_size() -> Option<usize> {
        u64::type_size()
    }
}

impl<'a> Nl for &'a [u8] {
    fn serialize(&self, mem: SerBuffer) -> Result<(), SerError> {
        let size = self.size();
        match mem.len() {
            i if i > size => return Err(SerError::BufferNotFilled),
            i if i < size => return Err(SerError::UnexpectedEOB),
            _ => (),
        };
        if let Err(e) = mem.as_mut().write_all(self) {
            Err(SerError::Wrapped(WrappedError::from(e)))
        } else {
            Ok(())
        }
    }

    fn deserialize(_m: DeBuffer) -> Result<Self, DeError> {
        unimplemented!()
    }

    fn size(&self) -> usize {
        self.len()
    }

    fn type_size() -> Option<usize> {
        None
    }
}

impl Nl for Buffer {
    fn serialize(&self, mem: SerBuffer) -> Result<(), SerError> {
        if let Err(e) = mem.as_mut().write(self.as_ref()) {
            Err(SerError::Wrapped(WrappedError::from(e)))
        } else {
            Ok(())
        }
    }

    fn deserialize(mem: DeBuffer) -> Result<Self, DeError> {
        Ok(Buffer::from(mem))
    }

    fn type_size() -> Option<usize> {
        None
    }

    fn size(&self) -> usize {
        self.len()
    }
}

impl Nl for Vec<u8> {
    fn serialize(&self, mem: SerBuffer) -> Result<(), SerError> {
        self.as_slice().serialize(mem)
    }

    fn deserialize(mem: DeBuffer) -> Result<Self, DeError> {
        Ok(mem.as_ref().to_vec())
    }

    fn size(&self) -> usize {
        self.len()
    }

    fn type_size() -> Option<usize> {
        None
    }
}

impl<'a> Nl for &'a str {
    fn serialize(&self, mem: SerBuffer) -> Result<(), SerError> {
        let size = self.size();
        match mem.len() {
            i if i > size => return Err(SerError::BufferNotFilled),
            i if i < size => return Err(SerError::UnexpectedEOB),
            _ => (),
        }
        match mem.as_mut().write(self.as_bytes()) {
            Ok(write_size) => {
                assert_eq!(write_size + 1, size);
                mem[write_size] = 0;
                Ok(())
            }
            Err(e) => Err(SerError::Wrapped(WrappedError::IOError(e))),
        }
    }

    fn deserialize(_: DeBuffer) -> Result<Self, DeError> {
        unimplemented!()
    }

    fn size(&self) -> usize {
        self.len() + 1
    }

    fn type_size() -> Option<usize> {
        None
    }
}

impl Nl for String {
    fn serialize(&self, mem: SerBuffer) -> Result<(), SerError> {
        self.as_str().serialize(mem)
    }

    fn deserialize(mem: DeBuffer) -> Result<Self, DeError> {
        let last_elem = mem.len() - 1;
        match mem.as_ref().get(last_elem) {
            Some(0) => (),
            _ => return Err(DeError::NullError),
        };
        String::from_utf8((mem[..last_elem]).to_vec()).map_err(DeError::new)
    }

    fn size(&self) -> usize {
        self.len() + 1
    }

    fn type_size() -> Option<usize> {
        None
    }
}

#[cfg(test)]
mod test {
    use super::*;

    use crate::utils::serialize;

    #[test]
    fn test_nl_u8() {
        let v = 5u8;
        let ser_buffer = serialize(&v, false).unwrap();
        assert_eq!(ser_buffer.as_slice()[0], v);

        let s = &[5u8] as &[u8];
        let de = u8::deserialize(s).unwrap();
        assert_eq!(de, 5)
    }

    #[test]
    fn test_nl_u16() {
        let v = 6000u16;
        let desired_buffer = v.to_ne_bytes();
        let ser_buffer = serialize(&v, false).unwrap();
        assert_eq!(ser_buffer.as_slice(), &desired_buffer);

        let de = u16::deserialize(&v.to_ne_bytes() as &[u8]).unwrap();
        assert_eq!(de, 6000);
    }

    #[test]
    fn test_nl_i32() {
        let v = 600_000i32;
        let desired_buffer = v.to_ne_bytes();
        let ser_buffer = serialize(&v, false).unwrap();
        assert_eq!(ser_buffer.as_slice(), &desired_buffer);

        let de = i32::deserialize(&v.to_ne_bytes() as &[u8]).unwrap();
        assert_eq!(de, 600_000);

        let v = -600_000i32;
        let desired_buffer = v.to_ne_bytes();
        let ser_buffer = serialize(&v, false).unwrap();
        assert_eq!(ser_buffer.as_slice(), &desired_buffer);

        let de = i32::deserialize(&v.to_ne_bytes() as &[u8]).unwrap();
        assert_eq!(de, -600_000)
    }

    #[test]
    fn test_nl_u32() {
        let v = 600_000u32;
        let desired_buffer = v.to_ne_bytes();
        let ser_buffer = serialize(&v, false).unwrap();
        assert_eq!(ser_buffer.as_slice(), &desired_buffer);

        let de = u32::deserialize(&v.to_ne_bytes() as &[u8]).unwrap();
        assert_eq!(de, 600_000)
    }

    #[test]
    fn test_nl_u64() {
        let v = 12_345_678_901_234u64;
        let desired_buffer = v.to_ne_bytes();
        let ser_buffer = serialize(&v, false).unwrap();
        assert_eq!(ser_buffer.as_slice(), &desired_buffer);

        let de = u64::deserialize(&v.to_ne_bytes() as &[u8]).unwrap();
        assert_eq!(de, 12_345_678_901_234);
    }

    #[test]
    fn test_nl_be_u64() {
        let v = 571_987_654u64;
        let desired_buffer = v.to_be_bytes();
        let ser_buffer = serialize(&BeU64(v), false).unwrap();
        assert_eq!(ser_buffer.as_slice(), &desired_buffer);
    }

    #[test]
    fn test_nl_slice() {
        let v: &[u8] = &[1, 2, 3, 4, 5, 6, 7, 8, 9];
        let ser_buffer = serialize(&v, false).unwrap();
        assert_eq!(v, ser_buffer.as_slice());
    }

    #[test]
    fn test_nl_vec() {
        let v = vec![1, 2, 3, 4, 5, 6, 7, 8, 9];
        let ser_buffer = serialize(&v, false).unwrap();
        assert_eq!(v.as_slice(), ser_buffer.as_slice());

        let v: &[u8] = &[1, 2, 3, 4, 5, 6, 7, 8, 9];
        let de = Vec::<u8>::deserialize(v).unwrap();
        assert_eq!(v, de.as_slice());
    }

    #[test]
    fn test_nl_str() {
        let s = "AAAAA";
        let ser_buffer = serialize(&s, false).unwrap();
        assert_eq!(&[65, 65, 65, 65, 65, 0], ser_buffer.as_slice());
    }

    #[test]
    fn test_nl_string() {
        let s = "AAAAA".to_string();
        let desired_s = "AAAAA\0";
        let ser_buffer = serialize(&s, false).unwrap();
        assert_eq!(desired_s.as_bytes(), ser_buffer.as_slice());

        let s = "AAAAAA\0";
        let de_s = "AAAAAA".to_string();
        let de = String::deserialize(s.as_bytes()).unwrap();
        assert_eq!(de_s, de)
    }
}