1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
//! Compact binary representations of nucleic acid kmers
pub type BitKmerSeq = u64;
pub type BitKmer = (BitKmerSeq, u8);

const NUC2BIT_LOOKUP: [Option<u8>; 256] = {
    let mut lookup = [None; 256];

    lookup[b'A' as usize] = Some(0);
    lookup[b'C' as usize] = Some(1);
    lookup[b'G' as usize] = Some(2);
    lookup[b'T' as usize] = Some(3);
    lookup[b'a' as usize] = Some(0);
    lookup[b'c' as usize] = Some(1);
    lookup[b'g' as usize] = Some(2);
    lookup[b't' as usize] = Some(3);

    lookup
};

fn nuc2bti_lookup_nocheck(nuc: u8) -> Option<u8> {
    unsafe { *NUC2BIT_LOOKUP.get_unchecked(nuc as usize) }
}

/// Takes a BitKmer and adds a new base on the end, optionally loping off the
/// first base if the resulting kmer is too long.
fn extend_kmer(kmer: &mut BitKmer, new_char: u8) -> bool {
    if let Some(new_char_int) = nuc2bti_lookup_nocheck(new_char) {
        let new_kmer = (kmer.0 << 2) + new_char_int as BitKmerSeq;

        // mask out any overflowed bits
        kmer.0 = new_kmer & (BitKmerSeq::pow(2, u32::from(2 * kmer.1)) - 1) as BitKmerSeq;
        true
    } else {
        false
    }
}

/// Used for the BitNuclKmer iterator to handle skipping invalid bases.
fn update_position(
    start_pos: &mut usize,
    kmer: &mut BitKmer,
    buffer: &[u8],
    initial: bool,
) -> bool {
    // check if we have enough "physical" space for one more kmer
    if *start_pos + kmer.1 as usize > buffer.len() {
        return false;
    }

    let (mut kmer_len, stop_len) = if initial {
        (0, (kmer.1 - 1) as usize)
    } else {
        ((kmer.1 - 1) as usize, kmer.1 as usize)
    };

    let cur_kmer = kmer;
    while kmer_len < stop_len {
        if extend_kmer(cur_kmer, buffer[*start_pos + kmer_len]) {
            kmer_len += 1;
        } else {
            kmer_len = 0;
            *cur_kmer = (0u64, cur_kmer.1);
            *start_pos += kmer_len + 1;
            if *start_pos + cur_kmer.1 as usize > buffer.len() {
                return false;
            }
        }
    }
    true
}

pub struct BitNuclKmer<'a> {
    start_pos: usize,
    cur_kmer: BitKmer,
    buffer: &'a [u8],
    canonical: bool,
}

impl<'a> BitNuclKmer<'a> {
    pub fn new(slice: &'a [u8], k: u8, canonical: bool) -> BitNuclKmer<'a> {
        let mut kmer = (0u64, k);
        let mut start_pos = 0;
        update_position(&mut start_pos, &mut kmer, slice, true);

        BitNuclKmer {
            start_pos,
            cur_kmer: kmer,
            buffer: slice,
            canonical,
        }
    }
}

impl<'a> Iterator for BitNuclKmer<'a> {
    type Item = (usize, BitKmer, bool);

    fn next(&mut self) -> Option<(usize, BitKmer, bool)> {
        if !update_position(&mut self.start_pos, &mut self.cur_kmer, self.buffer, false) {
            return None;
        }
        self.start_pos += 1;
        if self.canonical {
            let (kmer, was_rc) = canonical(self.cur_kmer);
            Some((self.start_pos - 1, kmer, was_rc))
        } else {
            Some((self.start_pos - 1, self.cur_kmer, false))
        }
    }
}

/// Reverse complement a BitKmer (reverses the sequence and swaps A<>T and G<>C)
pub fn reverse_complement(kmer: BitKmer) -> BitKmer {
    // FIXME: this is not going to work with BitKmers of u128 or u32
    // inspired from https://www.biostars.org/p/113640/
    let mut new_kmer = kmer.0;
    // reverse it
    new_kmer = (new_kmer >> 2 & 0x3333_3333_3333_3333) | (new_kmer & 0x3333_3333_3333_3333) << 2;
    new_kmer = (new_kmer >> 4 & 0x0F0F_0F0F_0F0F_0F0F) | (new_kmer & 0x0F0F_0F0F_0F0F_0F0F) << 4;
    new_kmer = (new_kmer >> 8 & 0x00FF_00FF_00FF_00FF) | (new_kmer & 0x00FF_00FF_00FF_00FF) << 8;
    new_kmer = (new_kmer >> 16 & 0x0000_FFFF_0000_FFFF) | (new_kmer & 0x0000_FFFF_0000_FFFF) << 16;
    new_kmer = (new_kmer >> 32 & 0x0000_0000_FFFF_FFFF) | (new_kmer & 0x0000_0000_FFFF_FFFF) << 32;
    // complement it
    new_kmer ^= 0xFFFF_FFFF_FFFF_FFFF;
    // shift it to the right size
    new_kmer >>= 2 * (32 - kmer.1);
    (new_kmer, kmer.1)
}

/// Return the lexigraphically lowest of the BitKmer and its reverse complement and
/// whether the returned kmer is the reverse_complement (true) or the original (false)
pub fn canonical(kmer: BitKmer) -> (BitKmer, bool) {
    let rc = reverse_complement(kmer);
    if kmer.0 > rc.0 {
        (rc, true)
    } else {
        (kmer, false)
    }
}

/// Find the lexicographically lowest substring of a given length in the BitKmer
pub fn minimizer(kmer: BitKmer, minmer_size: u8) -> BitKmer {
    let mut new_kmer = kmer.0;
    let mut lowest = !0;
    let bitmask = (BitKmerSeq::pow(2, u32::from(2 * minmer_size)) - 1) as BitKmerSeq;
    for _ in 0..=(kmer.1 - minmer_size) {
        let cur = bitmask & new_kmer;
        if cur < lowest {
            lowest = cur;
        }
        let cur_rev = reverse_complement((bitmask & new_kmer, kmer.1));
        if cur_rev.0 < lowest {
            lowest = cur_rev.0;
        }
        new_kmer >>= 2;
    }
    (lowest, kmer.1)
}

pub fn bitmer_to_bytes(kmer: BitKmer) -> Vec<u8> {
    let mut new_kmer = kmer.0;
    let mut new_kmer_str = Vec::new();
    // we're reading the bases off from the "high" end of the integer so we need to do some
    // math to figure out where they start (this helps us just pop the bases on the end
    // of the working buffer as we read them off "left to right")
    let offset = (kmer.1 - 1) * 2;
    let bitmask = BitKmerSeq::pow(2, u32::from(2 * kmer.1 - 1))
        + BitKmerSeq::pow(2, u32::from(2 * kmer.1 - 2));

    for _ in 0..kmer.1 {
        let new_char = (new_kmer & bitmask) >> offset;
        new_kmer <<= 2;
        new_kmer_str.push(match new_char {
            0 => b'A',
            1 => b'C',
            2 => b'G',
            3 => b'T',
            _ => panic!("Mathematical impossibility"),
        });
    }
    new_kmer_str
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn can_kmerize() {
        // test general function
        let mut i = 0;
        for (_, k, _) in BitNuclKmer::new(b"AGCT", 1, false) {
            match i {
                0 => assert_eq!(k.0, 0b00 as BitKmerSeq),
                1 => assert_eq!(k.0, 0b10 as BitKmerSeq),
                2 => assert_eq!(k.0, 0b01 as BitKmerSeq),
                3 => assert_eq!(k.0, 0b11 as BitKmerSeq),
                _ => unreachable!("Too many kmers"),
            }
            i += 1;
        }

        // test that we skip over N's
        i = 0;
        for (_, k, _) in BitNuclKmer::new(b"ACNGT", 2, false) {
            match i {
                0 => assert_eq!(k.0, 0b0001 as BitKmerSeq),
                1 => assert_eq!(k.0, 0b1011 as BitKmerSeq),
                _ => unreachable!("Too many kmers"),
            }
            i += 1;
        }

        // test that we skip over N's and handle short kmers
        i = 0;
        for (_, k, _) in BitNuclKmer::new(b"ACNG", 2, false) {
            match i {
                0 => assert_eq!(k.0, 0x0001 as BitKmerSeq),
                _ => unreachable!("Too many kmers"),
            }
            i += 1;
        }

        // test that the minimum length works
        i = 0;
        for (_, k, _) in BitNuclKmer::new(b"AC", 2, false) {
            match i {
                0 => assert_eq!(k.0, 0x0001 as BitKmerSeq),
                _ => unreachable!("Too many kmers"),
            }
            i += 1;
        }
    }

    #[test]
    fn test_iterator() {
        let seq = b"ACGTA";
        let mut kmer_iter = BitNuclKmer::new(seq, 3, false);
        assert_eq!(kmer_iter.next(), Some((0, (6, 3), false)));
        assert_eq!(kmer_iter.next(), Some((1, (27, 3), false)));
        assert_eq!(kmer_iter.next(), Some((2, (44, 3), false)));
        assert_eq!(kmer_iter.next(), None);

        let seq = b"TA";
        let mut kmer_iter = BitNuclKmer::new(seq, 3, false);
        assert_eq!(kmer_iter.next(), None);
    }

    #[test]
    fn test_reverse_complement() {
        assert_eq!(reverse_complement((0b00_0000, 3)).0, 0b11_1111);
        assert_eq!(reverse_complement((0b11_1111, 3)).0, 0b00_0000);
        assert_eq!(reverse_complement((0b0000_0000, 4)).0, 0b1111_1111);
        assert_eq!(reverse_complement((0b0001_1011, 4)).0, 0b0001_1011);
    }

    #[test]
    fn test_minimizer() {
        assert_eq!(minimizer((0b00_1011, 3), 2).0, 0b0010);
        assert_eq!(minimizer((0b00_1011, 3), 1).0, 0b00);
        assert_eq!(minimizer((0b1100_0011, 4), 2).0, 0b0000);
        assert_eq!(minimizer((0b11_0001, 3), 2).0, 0b0001);
    }

    #[test]
    fn test_bytes_to_bitkmer() {
        let mut ikmer: BitKmer = bytes_to_bitmer(b"C");
        assert_eq!(ikmer.0, 1 as BitKmerSeq);

        ikmer = bytes_to_bitmer(b"TTA");
        assert_eq!(ikmer.0, 60 as BitKmerSeq);

        ikmer = bytes_to_bitmer(b"AAA");
        assert_eq!(ikmer.0, 0 as BitKmerSeq);
    }

    #[test]
    fn test_bitmer_to_bytes() {
        assert_eq!(bitmer_to_bytes((1 as BitKmerSeq, 1)), b"C".to_vec());
        assert_eq!(bitmer_to_bytes((60 as BitKmerSeq, 3)), b"TTA".to_vec());
        assert_eq!(bitmer_to_bytes((0 as BitKmerSeq, 3)), b"AAA".to_vec());
    }

    pub fn bytes_to_bitmer(kmer: &[u8]) -> BitKmer {
        let k = kmer.len() as u8;

        let mut bit_kmer = (0u64, k);
        for i in 0..k {
            extend_kmer(&mut bit_kmer, kmer[i as usize]);
        }
        bit_kmer
    }
}