1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
use crate::topology::bias::Bias;
use crate::topology::bias_and_genes::BiasAndGenes;
use crate::topology::connection_type::ConnectionType;
use crate::topology::gene::{Gene, Point};
use crate::topology::mutation_probabilities::MutationProbabilities;
use crate::topology::serialization::{SerializationBias, SerializationGene, SerializationTopology};
use crate::train::evolution_number::EvNumber;
use num::traits::Float;
use numeric_literals::replace_numeric_literals;
use rand::prelude::*;
use rand_distr::{Distribution, Normal};
use serde::{Deserialize, Serialize};
use std::cell::RefCell;
use std::collections::HashMap;
use std::fmt::{Display, Formatter};
use std::rc::Rc;
use std::sync::{Arc, Mutex};

const NORMAL_STDDEV: f64 = 0.04;

pub type GeneSmrtPtr<T> = Rc<RefCell<Gene<T>>>;

#[derive(Deserialize, Serialize, Debug)]
pub struct Topology<T>
where
    T: Float + std::ops::AddAssign + Display + Send,
{
    max_layers: usize,
    max_per_layers: usize,
    last_result: T,
    result_before_mutation: T,
    pub layers_sizes: Vec<u8>,
    pub output_bias: Vec<Bias<T>>,
    pub genes_point: HashMap<Point, BiasAndGenes<T>>,
    genes_ev_number: HashMap<usize, GeneSmrtPtr<T>>,
}

pub type TopologySmrtPtr<T> = Arc<Mutex<Topology<T>>>;

unsafe impl<T> Send for Topology<T> where T: Float + std::ops::AddAssign + Display + Send {}

unsafe impl<T> Sync for Topology<T> where T: Float + std::ops::AddAssign + Display + Send {}

impl<T> Clone for Topology<T>
where
    T: Float + std::ops::AddAssign + Display + Send,
{
    fn clone(&self) -> Topology<T> {
        let genes_ev_number: HashMap<usize, GeneSmrtPtr<T>> = self
            .genes_ev_number
            .iter()
            .map(|(&ev_number, rc)| {
                let cell = &**rc;
                let ref_cell = &*cell.borrow();
                let cp = ref_cell.clone();
                (ev_number, Rc::new(RefCell::new(cp)))
            })
            .collect();

        let genes_point: HashMap<Point, BiasAndGenes<T>> = self
            .genes_point
            .iter()
            .map(|(point, bias_and_genes)| {
                let mut new_bg = BiasAndGenes::new(bias_and_genes.bias.clone());
                new_bg.genes = bias_and_genes
                    .genes
                    .iter()
                    .filter_map(|rc| {
                        let cell = &**rc;
                        let Gene {
                            evolution_number,
                            disabled,
                            ..
                        } = &*cell.borrow();
                        if !disabled {
                            let smart_ptr_cp =
                                genes_ev_number.get(evolution_number).unwrap().clone();
                            Some(smart_ptr_cp)
                        } else {
                            None
                        }
                    })
                    .collect();
                (*point, new_bg)
            })
            .collect();

        Topology {
            max_layers: self.max_layers,
            max_per_layers: self.max_per_layers,
            last_result: self.last_result,
            result_before_mutation: self.result_before_mutation,
            layers_sizes: self.layers_sizes.clone(),
            output_bias: self.output_bias.clone(),
            genes_point,
            genes_ev_number,
        }
    }
}

impl<T> Topology<T>
where
    T: Float + std::ops::AddAssign + Display + Send,
{
    pub fn new(max_layers: usize, max_per_layers: usize) -> Topology<T> {
        Topology {
            max_layers,
            max_per_layers,
            last_result: T::zero(),
            result_before_mutation: T::zero(),
            layers_sizes: Vec::new(),
            output_bias: Vec::new(),
            genes_point: HashMap::new(),
            genes_ev_number: HashMap::new(),
        }
    }

    #[replace_numeric_literals(T::from(literal).unwrap())]
    pub fn delta_compatibility(top1: &Topology<T>, top2: &Topology<T>, c1: T, c2: T, c3: T) -> T {
        // Disjoints = present in Gene1 but not Gene2
        let mut disjoints = T::zero();
        let mut common = T::zero();
        let mut w = T::zero();

        let one = T::one();
        for (ev_number, gene1) in top1.genes_ev_number.iter() {
            let cell = &**gene1;
            let gene1 = &*cell.borrow();
            match top2.genes_ev_number.get(ev_number) {
                Some(gene2) => {
                    let cell2 = &**gene2;
                    let gene2 = &*cell2.borrow();
                    common += one;
                    w += ((gene1.input_weight - gene2.input_weight).abs()
                        + (gene1.memory_weight - gene2.memory_weight).abs()
                        + (gene1.reset_input_weight - gene2.reset_input_weight).abs()
                        + (gene1.update_input_weight - gene2.update_input_weight).abs()
                        + (gene1.reset_memory_weight - gene2.reset_memory_weight).abs()
                        + (gene1.update_memory_weight - gene2.update_memory_weight).abs())
                        / 6;
                }
                None => {
                    disjoints += one;
                }
            }
        }
        w = w / common;
        let size_1 = T::from(top1.genes_ev_number.len()).unwrap();
        let size_2 = T::from(top2.genes_ev_number.len()).unwrap();
        let larger = size_1.max(size_2);
        let n = if larger > 20 { larger } else { 1 };
        // Excess = present in gene2 but not gene1
        let excess = size_2 - common;
        let v = c1 * disjoints + c2 * excess;
        v / n + w * c3
    }

    pub fn new_random(
        rng: &mut ThreadRng,
        input_count: usize,
        output_count: usize,
        max_layers: usize,
        max_per_layers: usize,
        ev_number: &EvNumber,
    ) -> Topology<T> {
        let connections_per_input = (output_count as f64 / input_count as f64).ceil() as u32;
        let mut not_added: Vec<usize> = Vec::new();
        let mut output_index: usize = 0;
        for _i in 0..input_count {
            for _o in 0..connections_per_input {
                not_added.push(output_index);
                if output_index < output_count - 1 {
                    output_index += 1;
                } else {
                    output_index = 0;
                }
            }
        }
        let mut new_topology = Topology::new(max_layers, max_per_layers);
        new_topology.layers_sizes = vec![input_count as u8, output_count as u8];
        let mut not_added_it = 0;
        for i in 0..input_count {
            let input = Point::new(0, i as u8);
            for _j in 0..connections_per_input {
                let index = not_added[not_added_it];
                not_added_it += 1;
                let output = Point::new(1, index as u8);
                let gene = Rc::new(RefCell::new(Gene::new_random(
                    rng, input, output, -1., 1., ev_number,
                )));
                new_topology.insert_gene(gene);
            }
        }
        new_topology.generate_output_bias(rng);
        new_topology
    }

    pub fn new_uniform(
        input_count: usize,
        output_count: usize,
        max_layers: usize,
        max_per_layers: usize,
        ev_number: &EvNumber,
    ) -> Topology<T> {
        let mut new_topology = Topology::new(max_layers, max_per_layers);
        new_topology.layers_sizes = vec![input_count as u8, output_count as u8];
        for i in 0..input_count {
            for j in 0..output_count {
                let input = Point::new(0u8, i as u8);
                let output = Point::new(1u8, j as u8);
                let gene = Rc::new(RefCell::new(Gene::new_one(input, output, ev_number)));
                new_topology.insert_gene(gene);
            }
        }
        new_topology.uniform_output_bias();
        new_topology
    }

    fn generate_output_bias(&mut self, rng: &mut ThreadRng) {
        let last_layer_size = self.layers_sizes.last().unwrap();
        self.output_bias = (0..*last_layer_size)
            .into_iter()
            .map(|_| Bias::new_random(rng))
            .collect();
    }

    fn uniform_output_bias(&mut self) {
        let last_layer_size = self.layers_sizes.last().unwrap();
        self.output_bias = (0..*last_layer_size)
            .into_iter()
            .map(|_| Bias::new_zero())
            .collect();
    }

    pub fn set_last_result(&mut self, result: T) {
        self.last_result = result;
    }

    pub fn get_last_result(&self) -> T {
        self.last_result
    }

    pub fn new_generation(
        &self,
        new_topologies: &mut Vec<Arc<Mutex<Topology<T>>>>,
        ev_number: &EvNumber,
        reproduction_count: usize,
        proba: &MutationProbabilities,
    ) {
        for _ in 0..reproduction_count {
            let mut cp = self.clone();
            cp.mutate(ev_number, proba);
            new_topologies.push(Arc::new(Mutex::new(cp)));
        }
    }

    pub fn change_weights(&mut self, rng: &mut ThreadRng) {
        let normal = Normal::new(0.0, NORMAL_STDDEV).unwrap();
        for gene in self.genes_ev_number.values() {
            let mut gene_cp = gene.borrow_mut();
            let change_weights = rng.gen_range(0.0..1.);
            if change_weights < 0.995 {
                gene_cp.input_weight += T::from(normal.sample(rng)).unwrap();
                gene_cp.memory_weight += T::from(normal.sample(rng)).unwrap();
                gene_cp.reset_input_weight += T::from(normal.sample(rng)).unwrap();
                gene_cp.update_input_weight += T::from(normal.sample(rng)).unwrap();
                gene_cp.reset_memory_weight += T::from(normal.sample(rng)).unwrap();
                gene_cp.update_memory_weight += T::from(normal.sample(rng)).unwrap();
            } else {
                gene_cp.random_reassign(rng);
            }
        }
        for gene_and_bias in self.genes_point.values_mut() {
            let change_bias = rng.gen_range(0.0..1.);
            if change_bias < 0.995 {
                gene_and_bias.bias.bias_input += T::from(normal.sample(rng)).unwrap();
                gene_and_bias.bias.bias_update += T::from(normal.sample(rng)).unwrap();
                gene_and_bias.bias.bias_reset += T::from(normal.sample(rng)).unwrap();
            } else {
                gene_and_bias.bias = Bias::new_random(rng);
            }
        }
        for bias in &mut self.output_bias {
            let change_bias = rng.gen_range(0.0..1.);
            let normal = Normal::new(0.0, NORMAL_STDDEV).unwrap();
            if change_bias < 0.9 {
                bias.bias_input += T::from(normal.sample(rng)).unwrap();
                bias.bias_update += T::from(normal.sample(rng)).unwrap();
                bias.bias_reset += T::from(normal.sample(rng)).unwrap();
            }
        }
    }

    #[inline]
    pub fn insert_gene(&mut self, gene: GeneSmrtPtr<T>) {
        let (input, ev_number) = {
            let gene = &*gene.borrow();
            (gene.input, gene.evolution_number)
        };
        match self.genes_point.get_mut(&input) {
            Some(found) => {
                found.genes.push(gene.clone());
            }
            None => {
                let bias = Bias::new_zero();
                let mut bias_and_genes: BiasAndGenes<T> = BiasAndGenes::new(bias);
                bias_and_genes.genes = vec![gene.clone()];
                self.genes_point.insert(input, bias_and_genes);
            }
        }
        self.genes_ev_number.insert(ev_number, gene);
    }

    #[inline]
    fn shift_right_one_layer(&mut self, layer: u8) {
        self.layers_sizes.insert(layer as usize, 1);

        for gene_rc in self.genes_ev_number.values_mut() {
            let mut gene = &mut *gene_rc.borrow_mut();
            if gene.input.layer >= layer {
                gene.input.layer += 1;
            }
            if gene.output.layer >= layer {
                gene.output.layer += 1;
            }
        }

        self.genes_point = self
            .genes_point
            .iter_mut()
            .map(|(point, b_and_g)| {
                if point.layer >= layer {
                    let point_cp = Point::new(point.layer + 1, point.index);
                    (point_cp, b_and_g.clone())
                } else {
                    (*point, b_and_g.clone())
                }
            })
            .collect();
    }

    /// Find random input and random output and adds a connection in the middle
    #[inline]
    fn add_node(&mut self, ev_number: &EvNumber, rng: &mut ThreadRng) {
        let non_disabled_connections = self
            .genes_ev_number
            .iter()
            .filter_map(|(_ev, gene_rc)| {
                if !gene_rc.borrow().disabled {
                    Some(gene_rc.clone())
                } else {
                    None
                }
            })
            .collect::<Vec<GeneSmrtPtr<T>>>();

        let gene_to_split_index = rng.gen_range(0..non_disabled_connections.len());
        let gene_to_split = &non_disabled_connections[gene_to_split_index];
        let (mut original_gene, should_create_new_layer) = {
            let mut gene = &mut *gene_to_split.borrow_mut();
            let should_create_new_layer = gene.output.layer - gene.input.layer >= 2;
            if should_create_new_layer && self.layers_sizes.len() >= self.max_layers {
                return;
            }
            gene.disabled = true;
            (gene.clone(), should_create_new_layer)
        };

        // If there is a layer between input and output, just add new node to the last index of the
        // layer just after input
        // Otherwise, we create a gene in the middle
        let output_of_input = if should_create_new_layer {
            let output_of_input = Point::new(
                original_gene.input.layer + 1,
                self.layers_sizes[original_gene.input.layer as usize + 1],
            );
            self.layers_sizes[original_gene.input.layer as usize + 1] += 1;
            output_of_input
        } else {
            let output_of_input = Point::new(original_gene.input.layer + 1, 0);
            self.shift_right_one_layer(original_gene.input.layer + 1);
            original_gene.output.layer += 1;
            output_of_input
        };
        let (middle_gene, end_gene) = original_gene.split(output_of_input, ev_number);
        self.insert_gene(Rc::new(RefCell::new(middle_gene)));
        self.insert_gene(Rc::new(RefCell::new(end_gene)));
    }

    #[inline]
    fn add_connection(&mut self, ev_number: &EvNumber, rng: &mut ThreadRng) {
        let max_layer = self.layers_sizes.len();
        let input_layer = if self.layers_sizes.len() > 2 {
            rng.gen_range(0..(max_layer - 2)) as u8
        } else {
            0
        };
        let input_index: u8 = rng.gen_range(0..self.layers_sizes[input_layer as usize]);
        let output_layer: u8 = rng.gen_range((input_layer + 1)..max_layer as u8);
        let output_index = rng.gen_range(0..(self.layers_sizes[output_layer as usize]));

        let input = Point::new(input_layer, input_index);
        let output = Point::new(output_layer, output_index);
        let just_created = self.new_gene(input, output, ev_number, rng);
        if let Some(old_values) =
            self.disable_genes(input, output, Rc::clone(&just_created), Some(ev_number))
        {
            just_created.borrow_mut().assign_values(old_values);
        }
    }

    /*#[allow(dead_code)]
    fn delete_neuron(&mut self, rng: &mut ThreadRng) {
        let input_layer = rng.gen_range(1..self.layers_sizes.len() - 2) as u8;
        let input_index: u8 = rng.gen_range(0..self.layers_sizes[input_layer as usize]);
        let input = Point::new(input_layer, input_index);
        self.remove_neuron(&input);
    }*/

    pub fn mutate(&mut self, ev_number: &EvNumber, proba: &MutationProbabilities) {
        let mut rng = thread_rng();
        let change_weights = rng.gen_range(0.0..1.);
        if change_weights < proba.change_weights {
            self.change_weights(&mut rng);
        } else {
            let change_topology = rng.gen_range(0.0..1.);
            if change_topology > proba.guaranteed_new_neuron {
                self.add_node(ev_number, &mut rng);
            } else {
                self.add_connection(ev_number, &mut rng);
            }
        }
        loop {
            let dont_have_outputs: Vec<GeneSmrtPtr<T>> = self
                .genes_point
                .iter()
                .filter_map(|(input, gene_and_bias)| {
                    if input.layer != 0
                        && (gene_and_bias.genes.is_empty()
                            || gene_and_bias
                                .genes
                                .iter()
                                .all(|gene_rc| gene_rc.borrow().disabled))
                    {
                        Some(gene_and_bias.genes[0].clone())
                    } else {
                        None
                    }
                })
                .collect();
            let dont_have_inputs: Vec<GeneSmrtPtr<T>> = self
                .genes_point
                .iter()
                .filter_map(|(input, gene_and_bias)| {
                    if input.layer != 0 {
                        if !self.neuron_has_inputs(input) {
                            Some(gene_and_bias.genes[0].clone())
                        } else {
                            None
                        }
                    } else {
                        None
                    }
                })
                .collect();
            if dont_have_outputs.is_empty() && dont_have_inputs.is_empty() {
                break;
            }
            for gene in &dont_have_outputs {
                self.remove_neuron(gene);
            }
            for gene in &dont_have_inputs {
                self.remove_neuron(gene);
            }
        }
    }

    fn new_gene(
        &mut self,
        input: Point,
        output: Point,
        ev_number: &EvNumber,
        rng: &mut ThreadRng,
    ) -> GeneSmrtPtr<T> {
        let new_gene = Rc::new(RefCell::new(Gene::new_random(
            rng, input, output, -1.0, 1.0, ev_number,
        )));
        self.insert_gene(new_gene.clone());
        new_gene
    }

    fn remove_neuron(&mut self, gene_rc: &GeneSmrtPtr<T>) {
        // get bias_and_gene
        let input = { gene_rc.borrow().input };
        let bias_and_gene = match self.genes_point.remove(&input) {
            None => {
                return;
            }
            Some(v) => v,
        };
        // disable all outputs from this neuron
        for gene_rc in &bias_and_gene.genes {
            let mut gene = gene_rc.borrow_mut();
            gene.disabled = true;
        }
        // Lower layer size
        self.layers_sizes[input.layer as usize] -= 1;
        let is_removed_layer = self.layers_sizes[input.layer as usize] == 0;
        if is_removed_layer {
            self.layers_sizes.retain(|&v| v != 0);
        };
        // Adjust all genes with inputs or outputs on the layer after the index
        // If the layer only had one neuron, do the same on further layers
        self.genes_point = self
            .genes_point
            .iter_mut()
            .map(|(point, bias_and_gene)| {
                let mut point = *point;
                if point.layer == input.layer && point.index > input.index {
                    point.index -= 1;
                }
                if is_removed_layer && point.layer > input.layer {
                    point.layer -= 1;
                }
                for gene_rc in &bias_and_gene.genes {
                    let mut gene = gene_rc.borrow_mut();
                    if gene.output == input {
                        gene.disabled = true;
                        continue;
                    }
                    if gene.input.layer == input.layer && gene.input.index > input.index {
                        gene.input.index -= 1;
                    }
                    if gene.output.layer == input.layer && gene.output.index > input.index {
                        gene.output.index -= 1;
                    }
                    if is_removed_layer {
                        if gene.input.layer > input.layer {
                            gene.input.layer -= 1;
                        }
                        if gene.output.layer > input.layer {
                            gene.output.layer -= 1;
                        }
                    }
                }
                (point, bias_and_gene.clone())
            })
            .collect();
    }

    /// Returns true if at least one Gene has a given output
    ///
    /// # Argument
    ///
    /// `output` - The point to check if any gene points to it
    fn neuron_has_inputs(&self, input: &Point) -> bool {
        self.genes_point.iter().any(|(_point, b_and_c)| {
            b_and_c.genes.iter().any(|gene_rc| {
                let gene = gene_rc.borrow();
                !gene.disabled && gene.output == *input
            })
        })
    }

    fn disable_genes(
        &mut self,
        input: Point,
        output: Point,
        last: GeneSmrtPtr<T>,
        ev_number: Option<&EvNumber>,
    ) -> Option<Gene<T>> {
        if let Some(found) = self.genes_point.get(&input) {
            let mut aggregate_output_gene = ev_number.map(|ev_number| {
                let mut new_gene = Gene::new_zero(input, output, ev_number);
                new_gene.connection_type = ConnectionType::Relu;
                new_gene
            }); // Sums the values of the deleted genes to set value of the newly created gene
            let genes = &found.genes;
            for gene_rc in genes {
                if Rc::ptr_eq(gene_rc, &last) {
                    continue;
                }
                let cell = &**gene_rc;
                let compared_output = {
                    let gene = cell.borrow();
                    if gene.disabled {
                        continue;
                    }
                    gene.clone()
                };
                if output == compared_output.output
                    || self.path_overrides(
                        &output,
                        &compared_output.output,
                        &last,
                        self.layers_sizes.len() as i8 >> 1,
                    )
                {
                    let mut gene = cell.borrow_mut();
                    gene.disabled = true;
                    if let Some(aggregate_output_gene) = &mut aggregate_output_gene {
                        *aggregate_output_gene += compared_output;
                    }
                }
            }
            aggregate_output_gene
        } else {
            None
        }
    }

    fn path_overrides(
        &self,
        input: &Point,
        output: &Point,
        last: &GeneSmrtPtr<T>,
        recursion: i8,
    ) -> bool {
        if recursion <= 0 {
            return false;
        }
        match self.genes_point.get(input) {
            Some(found) => {
                let genes = &found.genes;
                for gene_rc in genes {
                    if Rc::ptr_eq(gene_rc, last) {
                        continue;
                    }
                    let cell = &**gene_rc;
                    let gene = &*cell.borrow();
                    if gene.disabled {
                        continue;
                    }
                    let compared_output = &gene.output;
                    if *compared_output == *output
                        || compared_output.layer < output.layer
                            && self.path_overrides(compared_output, output, last, recursion - 1)
                    {
                        return true;
                    }
                }
                false
            }
            None => false,
        }
    }

    pub fn from_string(serialized: &str) -> Topology<T> {
        let serialization: SerializationTopology =
            SerializationTopology::from_string(serialized).unwrap();
        let mut layers_sizes = Vec::new();
        let mut output_bias: Vec<Bias<T>> = Vec::new();
        let mut genes_point = HashMap::new();
        let mut genes_ev_number = HashMap::new();

        for ser_bias in &serialization.biases {
            let input = Point::new(ser_bias.neuron.0, ser_bias.neuron.1);
            if input.layer >= layers_sizes.len() as u8 {
                layers_sizes.resize((input.layer + 1) as usize, 0);
                layers_sizes[input.layer as usize] = input.index + 1;
            } else {
                layers_sizes[input.layer as usize] =
                    layers_sizes[input.layer as usize].max(input.index + 1);
            }
        }

        output_bias.resize(*layers_sizes.last().unwrap() as usize, Bias::new_zero());
        for ser_bias in &serialization.biases {
            let input = Point::new(ser_bias.neuron.0, ser_bias.neuron.1);
            if input.layer < (layers_sizes.len() - 1) as u8 {
                let bias_and_gene = BiasAndGenes::new(ser_bias.bias.cast());
                genes_point.insert(input, bias_and_gene);
            } else {
                output_bias[input.index as usize] = ser_bias.bias.cast();
            }
        }

        for gene in &serialization.genes {
            let input = Point::new(gene.input.0, gene.input.1);
            let output = Point::new(gene.output.0, gene.output.1);
            let new_gene = Rc::new(RefCell::new(Gene {
                input,
                output,
                input_weight: num::cast(gene.input_weight).unwrap(),
                memory_weight: num::cast(gene.memory_weight).unwrap(),
                reset_input_weight: num::cast(gene.reset_input_weight).unwrap(),
                update_input_weight: num::cast(gene.update_input_weight).unwrap(),
                reset_memory_weight: num::cast(gene.reset_memory_weight).unwrap(),
                update_memory_weight: num::cast(gene.update_memory_weight).unwrap(),
                evolution_number: gene.ev_number.and_then(num::cast).unwrap_or_default(),
                connection_type: ConnectionType::from_int(gene.connection_type),
                disabled: gene.disabled,
            }));

            if let Some(ev_number) = gene.ev_number {
                genes_ev_number.insert(num::cast(ev_number).unwrap(), Rc::clone(&new_gene));
            }

            if gene.disabled {
                continue;
            }

            match genes_point.get_mut(&input) {
                Some(b_and_g) => b_and_g.genes.push(new_gene),
                None => panic!("Gene doesn't have a neuron"),
            }
        }

        Topology {
            max_layers: layers_sizes.len(),
            max_per_layers: *layers_sizes.iter().max().unwrap() as usize,
            last_result: T::zero(),
            result_before_mutation: T::zero(),
            layers_sizes,
            output_bias,
            genes_point,
            genes_ev_number,
        }
    }

    #[inline]
    pub fn crossover(best: &Topology<T>, worst: &Topology<T>) -> TopologySmrtPtr<T> {
        let mut new_topology = best.clone();
        for (ev_number, worst_gene) in worst.genes_ev_number.iter() {
            let cell = &**worst_gene;
            let worst_gene = &mut *cell.borrow_mut();
            // If gene exists in both topologies, adjust weight to the average between the 2
            if new_topology.genes_ev_number.get(ev_number).is_none() {
                // If gene only exists in the worst topology, try to add it only if the neuron
                // exists in the best topology
                // Only crossover this gene if both inputs and outputs neuron already exist
                if !worst_gene.disabled && new_topology.neuron_has_inputs(&worst_gene.output) {
                    if let Some(found) = new_topology.genes_point.get_mut(&worst_gene.input) {
                        let worst_gene_clone = Rc::new(RefCell::new(worst_gene.clone()));
                        found.genes.push(worst_gene_clone.clone());
                        new_topology
                            .genes_ev_number
                            .insert(worst_gene.evolution_number, worst_gene_clone.clone());
                        new_topology.disable_genes(
                            worst_gene.input,
                            worst_gene.output,
                            worst_gene_clone,
                            None,
                        );
                    }
                }
            }
        }
        Arc::new(Mutex::new(new_topology))
    }
}

impl<T> Display for Topology<T>
where
    T: Float + std::ops::AddAssign + Display + Send,
{
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        let mut biases: Vec<SerializationBias> = self
            .genes_point
            .iter()
            .map(|(point, b_and_g)| SerializationBias::new(*point, b_and_g.bias.clone()))
            .collect();
        let last_layer = self.layers_sizes.len() - 1;
        let mut output_biases: Vec<SerializationBias> = self
            .output_bias
            .iter()
            .enumerate()
            .map(|(index, bias)| {
                SerializationBias::new(Point::new(last_layer as u8, index as u8), bias.clone())
            })
            .collect();
        biases.append(&mut output_biases);
        let genes = self
            .genes_point
            .iter()
            .flat_map(|(_point, gene)| {
                gene.genes
                    .iter()
                    .map(|gene| {
                        let cell = &**gene;
                        let gene = &*cell.borrow();
                        SerializationGene {
                            connection_type: gene.connection_type.to_int(),
                            disabled: gene.disabled,
                            input: (gene.input.layer, gene.input.index),
                            input_weight: num::cast(gene.input_weight).unwrap(),
                            memory_weight: num::cast(gene.memory_weight).unwrap(),
                            output: (gene.output.layer, gene.output.index),
                            reset_input_weight: num::cast(gene.reset_input_weight).unwrap(),
                            reset_memory_weight: num::cast(gene.reset_memory_weight).unwrap(),
                            update_input_weight: num::cast(gene.update_input_weight).unwrap(),
                            update_memory_weight: num::cast(gene.update_memory_weight).unwrap(),
                            ev_number: num::cast(gene.evolution_number),
                        }
                    })
                    .collect::<Vec<SerializationGene>>()
            })
            .collect();
        let serialization = SerializationTopology::new(biases, genes);
        write!(
            f,
            "{}",
            serde_json::to_string_pretty(&serialization).unwrap()
        )
    }
}

impl<T> PartialEq for Topology<T>
where
    T: Float + std::ops::AddAssign + Display + Send,
{
    fn eq(&self, other: &Self) -> bool {
        if self.layers_sizes.len() != other.layers_sizes.len()
            || self.genes_ev_number.len() != other.genes_ev_number.len()
            || self.genes_point.len() != other.genes_point.len()
        {
            return false;
        }
        if self
            .layers_sizes
            .iter()
            .zip(other.layers_sizes.iter())
            .any(|(&a, &b)| a != b)
        {
            return false;
        }
        for (ev_number, gene) in &self.genes_ev_number {
            match other.genes_ev_number.get(ev_number) {
                Some(gene2) => {
                    let gene = gene.borrow();
                    let gene2 = gene2.borrow();
                    if *gene != *gene2 {
                        return false;
                    }
                }
                None => {
                    return false;
                }
            }
        }
        for (point, b_and_g) in &self.genes_point {
            match other.genes_point.get(point) {
                Some(b_and_g2) => {
                    if b_and_g.bias != b_and_g2.bias {
                        return false;
                    }
                    if b_and_g
                        .genes
                        .iter()
                        .zip(b_and_g2.genes.iter())
                        .any(|(gene1, gene2)| {
                            let gene1 = &*gene1.borrow();
                            let gene2 = &*gene2.borrow();
                            *gene1 != *gene2
                        })
                    {
                        return false;
                    }
                }
                None => {
                    return false;
                }
            }
        }
        true
    }
}