1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

use std::cmp;
use std::slice;

use imp_prelude::*;

use dimension;
use iterators;
use shape_error::{self, ShapeError};
use super::zipsl;
use {
    NdIndex,
    AxisChunksIter,
    AxisChunksIterMut,
    Elements,
    ElementsMut,
    Indexed,
    IndexedMut,
    InnerIter,
    InnerIterMut,
    OuterIter,
    OuterIterMut,
};

impl<A, S, D> ArrayBase<S, D> where S: Data<Elem=A>, D: Dimension
{
    /// Return the total number of elements in the array.
    pub fn len(&self) -> usize {
        self.dim.size()
    }

    /// Return the shape of the array.
    pub fn dim(&self) -> D {
        self.dim.clone()
    }

    /// Return the shape of the array as a slice.
    pub fn shape(&self) -> &[Ix] {
        self.dim.slice()
    }

    /// Return the strides of the array
    pub fn strides(&self) -> &[Ixs] {
        let s = self.strides.slice();
        // reinterpret unsigned integer as signed
        unsafe {
            slice::from_raw_parts(s.as_ptr() as *const _, s.len())
        }
    }

    /// Return the number of dimensions (axes) in the array
    pub fn ndim(&self) -> usize {
        self.dim.ndim()
    }

    /// Return a read-only view of the array
    pub fn view(&self) -> ArrayView<A, D> {
        debug_assert!(self.pointer_is_inbounds());
        unsafe {
            ArrayView::new_(self.ptr, self.dim.clone(), self.strides.clone())
        }
    }

    /// Return a read-write view of the array
    pub fn view_mut(&mut self) -> ArrayViewMut<A, D>
        where S: DataMut,
    {
        self.ensure_unique();
        unsafe {
            ArrayViewMut::new_(self.ptr, self.dim.clone(), self.strides.clone())
        }
    }

    /// Return an uniquely owned copy of the array
    pub fn to_owned(&self) -> OwnedArray<A, D>
        where A: Clone
    {
        let data = if let Some(slc) = self.as_slice() {
            slc.to_vec()
        } else {
            self.iter().cloned().collect()
        };
        unsafe {
            ArrayBase::from_vec_dim_unchecked(self.dim.clone(), data)
        }
    }

    /// Return a shared ownership (copy on write) array.
    pub fn to_shared(&self) -> RcArray<A, D>
        where A: Clone
    {
        // FIXME: Avoid copying if it’s already an RcArray.
        self.to_owned().into_shared()
    }

    /// Turn the array into a shared ownership (copy on write) array,
    /// without any copying.
    pub fn into_shared(self) -> RcArray<A, D>
        where S: DataOwned,
    {
        let data = self.data.into_shared();
        ArrayBase {
            data: data,
            ptr: self.ptr,
            dim: self.dim,
            strides: self.strides,
        }
    }

    /// Return an iterator of references to the elements of the array.
    ///
    /// Iterator element type is `&A`.
    pub fn iter(&self) -> Elements<A, D> {
        debug_assert!(self.pointer_is_inbounds());
        self.view().into_iter_()
    }

    /// Return an iterator of mutable references to the elements of the array.
    ///
    /// Iterator element type is `&mut A`.
    pub fn iter_mut(&mut self) -> ElementsMut<A, D>
        where S: DataMut,
    {
        self.ensure_unique();
        self.view_mut().into_iter_()
    }

    /// Return an iterator of indexes and references to the elements of the array.
    ///
    /// Iterator element type is `(D, &A)`.
    pub fn indexed_iter(&self) -> Indexed<A, D> {
        Indexed(self.view().into_elements_base())
    }

    /// Return an iterator of indexes and mutable references to the elements of the array.
    ///
    /// Iterator element type is `(D, &mut A)`.
    pub fn indexed_iter_mut(&mut self) -> IndexedMut<A, D>
        where S: DataMut,
    {
        IndexedMut(self.view_mut().into_elements_base())
    }


    /// Return a sliced array.
    ///
    /// See [*Slicing*](#slicing) for full documentation.
    /// See also [`D::SliceArg`].
    ///
    /// [`D::SliceArg`]: trait.Dimension.html#associatedtype.SliceArg
    ///
    /// **Panics** if an index is out of bounds or stride is zero.<br>
    /// (**Panics** if `D` is `Vec` and `indexes` does not match the number of array axes.)
    pub fn slice(&self, indexes: &D::SliceArg) -> ArrayView<A, D> {
        let mut arr = self.view();
        arr.islice(indexes);
        arr
    }

    /// Return a sliced read-write view of the array.
    ///
    /// See also [`D::SliceArg`].
    ///
    /// [`D::SliceArg`]: trait.Dimension.html#associatedtype.SliceArg
    ///
    /// **Panics** if an index is out of bounds or stride is zero.<br>
    /// (**Panics** if `D` is `Vec` and `indexes` does not match the number of array axes.)
    pub fn slice_mut(&mut self, indexes: &D::SliceArg) -> ArrayViewMut<A, D>
        where S: DataMut
    {
        let mut arr = self.view_mut();
        arr.islice(indexes);
        arr
    }

    /// Slice the array’s view in place.
    ///
    /// See also [`D::SliceArg`].
    ///
    /// [`D::SliceArg`]: trait.Dimension.html#associatedtype.SliceArg
    ///
    /// **Panics** if an index is out of bounds or stride is zero.<br>
    /// (**Panics** if `D` is `Vec` and `indexes` does not match the number of array axes.)
    pub fn islice(&mut self, indexes: &D::SliceArg) {
        let offset = Dimension::do_slices(&mut self.dim, &mut self.strides, indexes);
        unsafe {
            self.ptr = self.ptr.offset(offset);
        }
        debug_assert!(self.pointer_is_inbounds());
    }

    /// Return a reference to the element at `index`, or return `None`
    /// if the index is out of bounds.
    ///
    /// Arrays also support indexing syntax: `array[index]`.
    ///
    /// ```
    /// use ndarray::arr2;
    ///
    /// let a = arr2(&[[1., 2.],
    ///                [3., 4.]]);
    ///
    /// assert!(
    ///     a.get((0, 1)) == Some(&2.) &&
    ///     a.get((0, 2)) == None &&
    ///     a[(0, 1)] == 2. &&
    ///     a[[0, 1]] == 2.
    /// );
    /// ```
    pub fn get<I>(&self, index: I) -> Option<&A>
        where I: NdIndex<Dim=D>,
    {
        let ptr = self.ptr;
        index.index_checked(&self.dim, &self.strides)
             .map(move |offset| unsafe { &*ptr.offset(offset) })
    }

    /// Return a mutable reference to the element at `index`, or return `None`
    /// if the index is out of bounds.
    pub fn get_mut<I>(&mut self, index: I) -> Option<&mut A>
        where S: DataMut,
              I: NdIndex<Dim=D>,
    {
        self.ensure_unique();
        let ptr = self.ptr;
        index.index_checked(&self.dim, &self.strides)
             .map(move |offset| unsafe { &mut *ptr.offset(offset) })
    }

    /// Perform *unchecked* array indexing.
    ///
    /// Return a reference to the element at `index`.
    ///
    /// **Note:** only unchecked for non-debug builds of ndarray.
    #[inline]
    pub unsafe fn uget(&self, index: D) -> &A {
        debug_assert!(self.dim
                          .stride_offset_checked(&self.strides, &index)
                          .is_some());
        let off = Dimension::stride_offset(&index, &self.strides);
        &*self.ptr.offset(off)
    }

    /// Perform *unchecked* array indexing.
    ///
    /// Return a mutable reference to the element at `index`.
    ///
    /// **Note:** Only unchecked for non-debug builds of ndarray.<br>
    /// **Note:** The array must be uniquely held when mutating it.
    #[inline]
    pub unsafe fn uget_mut(&mut self, index: D) -> &mut A
        where S: DataMut
    {
        debug_assert!(self.data.is_unique());
        debug_assert!(self.dim
                          .stride_offset_checked(&self.strides, &index)
                          .is_some());
        let off = Dimension::stride_offset(&index, &self.strides);
        &mut *self.ptr.offset(off)
    }

    /// Along `axis`, select the subview `index` and return a
    /// view with that axis removed.
    ///
    /// See [*Subviews*](#subviews) for full documentation.
    ///
    /// **Panics** if `axis` or `index` is out of bounds.
    ///
    /// ```
    /// use ndarray::{arr1, arr2, Axis};
    ///
    /// let a = arr2(&[[1., 2.],    // -- axis 0, row 0
    ///                [3., 4.],    // -- axis 0, row 1
    ///                [5., 6.]]);  // -- axis 0, row 2
    /// //               \   \
    /// //                \   axis 1, column 1
    /// //                 axis 1, column 0
    /// assert!(
    ///     a.subview(Axis(0), 1) == arr1(&[3., 4.]) &&
    ///     a.subview(Axis(1), 1) == arr1(&[2., 4., 6.])
    /// );
    /// ```
    pub fn subview(&self, axis: Axis, index: Ix)
        -> ArrayView<A, <D as RemoveAxis>::Smaller>
        where D: RemoveAxis,
    {
        self.view().into_subview(axis, index)
    }

    /// Along `axis`, select the subview `index` and return a read-write view
    /// with the axis removed.
    ///
    /// **Panics** if `axis` or `index` is out of bounds.
    ///
    /// ```
    /// use ndarray::{arr2, aview2, Axis};
    ///
    /// let mut a = arr2(&[[1., 2.],
    ///                    [3., 4.]]);
    ///
    /// a.subview_mut(Axis(1), 1).iadd_scalar(&10.);
    ///
    /// assert!(
    ///     a == aview2(&[[1., 12.],
    ///                   [3., 14.]])
    /// );
    /// ```
    pub fn subview_mut(&mut self, axis: Axis, index: Ix)
        -> ArrayViewMut<A, D::Smaller>
        where S: DataMut,
              D: RemoveAxis,
    {
        self.view_mut().into_subview(axis, index)
    }

    /// Collapse dimension `axis` into length one,
    /// and select the subview of `index` along that axis.
    ///
    /// **Panics** if `index` is past the length of the axis.
    pub fn isubview(&mut self, axis: Axis, index: Ix) {
        dimension::do_sub(&mut self.dim, &mut self.ptr, &self.strides,
                          axis.axis(), index)
    }

    /// Along `axis`, select the subview `index` and return `self`
    /// with that axis removed.
    ///
    /// See [`.subview()`](#method.subview) and [*Subviews*](#subviews) for full documentation.
    pub fn into_subview(mut self, axis: Axis, index: Ix)
        -> ArrayBase<S, <D as RemoveAxis>::Smaller>
        where D: RemoveAxis,
    {
        self.isubview(axis, index);
        let axis = axis.axis();
        // don't use reshape -- we always know it will fit the size,
        // and we can use remove_axis on the strides as well
        ArrayBase {
            data: self.data,
            ptr: self.ptr,
            dim: self.dim.remove_axis(axis),
            strides: self.strides.remove_axis(axis),
        }
    }

    /// Return an iterator that traverses over all dimensions but the innermost,
    /// and yields each inner row.
    ///
    /// For example, in a 2 × 2 × 3 array, the iterator element
    /// is a row of 3 elements (and there are 2 × 2 = 4 rows in total).
    ///
    /// Iterator element is `ArrayView<A, Ix>` (1D array view).
    ///
    /// ```
    /// use ndarray::arr3;
    /// let a = arr3(&[[[ 0,  1,  2],    // -- row 0, 0
    ///                 [ 3,  4,  5]],   // -- row 0, 1
    ///                [[ 6,  7,  8],    // -- row 1, 0
    ///                 [ 9, 10, 11]]]); // -- row 1, 1
    /// // `inner_iter` yields the four inner rows of the 3D array.
    /// let mut row_sums = a.inner_iter().map(|v| v.scalar_sum());
    /// assert_eq!(row_sums.collect::<Vec<_>>(), vec![3, 12, 21, 30]);
    /// ```
    pub fn inner_iter(&self) -> InnerIter<A, D> {
        iterators::new_inner_iter(self.view())
    }

    /// Return an iterator that traverses over all dimensions but the innermost,
    /// and yields each inner row.
    ///
    /// Iterator element is `ArrayViewMut<A, Ix>` (1D read-write array view).
    pub fn inner_iter_mut(&mut self) -> InnerIterMut<A, D>
        where S: DataMut
    {
        iterators::new_inner_iter_mut(self.view_mut())
    }

    /// Return an iterator that traverses over the outermost dimension
    /// and yields each subview.
    ///
    /// For example, in a 2 × 2 × 3 array, the iterator element
    /// is a 2 × 3 subview (and there are 2 in total).
    ///
    /// Iterator element is `ArrayView<A, D::Smaller>` (read-only array view).
    ///
    /// ```
    /// use ndarray::{arr3, Axis};
    ///
    /// let a = arr3(&[[[ 0,  1,  2],    // \ axis 0, submatrix 0
    ///                 [ 3,  4,  5]],   // /
    ///                [[ 6,  7,  8],    // \ axis 0, submatrix 1
    ///                 [ 9, 10, 11]]]); // /
    /// // `outer_iter` yields the two submatrices along axis 0.
    /// let mut iter = a.outer_iter();
    /// assert_eq!(iter.next().unwrap(), a.subview(Axis(0), 0));
    /// assert_eq!(iter.next().unwrap(), a.subview(Axis(0), 1));
    /// ```
    #[allow(deprecated)]
    pub fn outer_iter(&self) -> OuterIter<A, D::Smaller>
        where D: RemoveAxis,
    {
        self.view().into_outer_iter()
    }

    /// Return an iterator that traverses over the outermost dimension
    /// and yields each subview.
    ///
    /// Iterator element is `ArrayViewMut<A, D::Smaller>` (read-write array view).
    #[allow(deprecated)]
    pub fn outer_iter_mut(&mut self) -> OuterIterMut<A, D::Smaller>
        where S: DataMut,
              D: RemoveAxis,
    {
        self.view_mut().into_outer_iter()
    }

    /// Return an iterator that traverses over `axis`
    /// and yields each subview along it.
    ///
    /// For example, in a 2 × 2 × 3 array, with `axis` equal to 1,
    /// the iterator element
    /// is a 2 × 3 subview (and there are 2 in total).
    ///
    /// Iterator element is `ArrayView<A, D::Smaller>` (read-only array view).
    ///
    /// See [*Subviews*](#subviews) for full documentation.
    ///
    /// **Panics** if `axis` is out of bounds.
    pub fn axis_iter(&self, axis: Axis) -> OuterIter<A, D::Smaller>
        where D: RemoveAxis,
    {
        iterators::new_axis_iter(self.view(), axis.axis())
    }


    /// Return an iterator that traverses over `axis`
    /// and yields each mutable subview along it.
    ///
    /// Iterator element is `ArrayViewMut<A, D::Smaller>`
    /// (read-write array view).
    ///
    /// **Panics** if `axis` is out of bounds.
    pub fn axis_iter_mut(&mut self, axis: Axis) -> OuterIterMut<A, D::Smaller>
        where S: DataMut,
              D: RemoveAxis,
    {
        iterators::new_axis_iter_mut(self.view_mut(), axis.axis())
    }


    /// Return an iterator that traverses over `axis` by chunks of `size`,
    /// yielding non-overlapping views along that axis.
    ///
    /// Iterator element is `ArrayView<A, D>`
    ///
    /// The last view may have less elements if `size` does not divide
    /// the axis' dimension.
    ///
    /// **Panics** if `axis` is out of bounds.
    ///
    /// ```
    /// use ndarray::OwnedArray;
    /// use ndarray::{arr3, Axis};
    ///
    /// let a = OwnedArray::from_iter(0..28).into_shape((2, 7, 2)).unwrap();
    /// let mut iter = a.axis_chunks_iter(Axis(1), 2);
    ///
    /// // first iteration yields a 2 × 2 × 2 view
    /// assert_eq!(iter.next().unwrap(),
    ///            arr3(&[[[ 0,  1], [ 2, 3]],
    ///                   [[14, 15], [16, 17]]]));
    ///
    /// // however the last element is a 2 × 1 × 2 view since 7 % 2 == 1
    /// assert_eq!(iter.next_back().unwrap(), arr3(&[[[12, 13]],
    ///                                              [[26, 27]]]));
    /// ```
    pub fn axis_chunks_iter(&self, axis: Axis, size: usize) -> AxisChunksIter<A, D> {
        iterators::new_chunk_iter(self.view(), axis.axis(), size)
    }

    /// Return an iterator that traverses over `axis` by chunks of `size`,
    /// yielding non-overlapping read-write views along that axis.
    ///
    /// Iterator element is `ArrayViewMut<A, D>`
    ///
    /// **Panics** if `axis` is out of bounds.
    pub fn axis_chunks_iter_mut(&mut self, axis: Axis, size: usize)
        -> AxisChunksIterMut<A, D>
        where S: DataMut
    {
        iterators::new_chunk_iter_mut(self.view_mut(), axis.axis(), size)
    }

    // Return (length, stride) for diagonal
    fn diag_params(&self) -> (Ix, Ixs) {
        /* empty shape has len 1 */
        let len = self.dim.slice().iter().cloned().min().unwrap_or(1);
        let stride = self.strides()
                         .iter()
                         .fold(0, |sum, s| sum + s);
        (len, stride)
    }

    /// Return an view of the diagonal elements of the array.
    ///
    /// The diagonal is simply the sequence indexed by *(0, 0, .., 0)*,
    /// *(1, 1, ..., 1)* etc as long as all axes have elements.
    pub fn diag(&self) -> ArrayView<A, Ix> {
        self.view().into_diag()
    }

    /// Return a read-write view over the diagonal elements of the array.
    pub fn diag_mut(&mut self) -> ArrayViewMut<A, Ix>
        where S: DataMut,
    {
        self.view_mut().into_diag()
    }

    /// Return the diagonal as a one-dimensional array.
    pub fn into_diag(self) -> ArrayBase<S, Ix> {
        let (len, stride) = self.diag_params();
        ArrayBase {
            data: self.data,
            ptr: self.ptr,
            dim: len,
            strides: stride as Ix,
        }
    }

    /// Make the array unshared.
    ///
    /// This method is mostly only useful with unsafe code.
    fn ensure_unique(&mut self)
        where S: DataMut
    {
        debug_assert!(self.pointer_is_inbounds());
        S::ensure_unique(self);
        debug_assert!(self.pointer_is_inbounds());
    }

    /// Return `true` if the array data is laid out in contiguous “C order” in
    /// memory (where the last index is the most rapidly varying).
    ///
    /// Return `false` otherwise, i.e the array is possibly not
    /// contiguous in memory, it has custom strides, etc.
    pub fn is_standard_layout(&self) -> bool {
        let defaults = self.dim.default_strides();
        if self.strides == defaults {
            return true;
        }
        // check all dimensions -- a dimension of length 1 can have unequal strides
        for (&dim, (&s, &ds)) in zipsl(self.dim.slice(),
                                       zipsl(self.strides(), defaults.slice()))
        {
            if dim != 1 && s != (ds as Ixs) {
                return false;
            }
        }
        true
    }

    /// Return the array’s data as a slice, if it is contiguous and
    /// the element order corresponds to the memory order. Return `None` otherwise.
    pub fn as_slice(&self) -> Option<&[A]> {
        if self.is_standard_layout() {
            unsafe {
                Some(slice::from_raw_parts(self.ptr, self.len()))
            }
        } else {
            None
        }
    }

    /// Return the array’s data as a slice, if it is contiguous and
    /// the element order corresponds to the memory order. Return `None` otherwise.
    pub fn as_slice_mut(&mut self) -> Option<&mut [A]>
        where S: DataMut
    {
        if self.is_standard_layout() {
            self.ensure_unique();
            unsafe {
                Some(slice::from_raw_parts_mut(self.ptr, self.len()))
            }
        } else {
            None
        }
    }

    /// Transform the array into `shape`; any shape with the same number of
    /// elements is accepted.
    ///
    /// May clone all elements if needed to arrange elements in standard
    /// layout (and break sharing).
    ///
    /// **Panics** if shapes are incompatible.
    ///
    /// ```
    /// use ndarray::{rcarr1, rcarr2};
    ///
    /// assert!(
    ///     rcarr1(&[1., 2., 3., 4.]).reshape((2, 2))
    ///     == rcarr2(&[[1., 2.],
    ///                 [3., 4.]])
    /// );
    /// ```
    pub fn reshape<E>(&self, shape: E) -> ArrayBase<S, E>
        where S: DataShared + DataOwned,
              A: Clone,
              E: Dimension,
    {
        if shape.size_checked() != Some(self.dim.size()) {
            panic!("Incompatible shapes in reshape, attempted from: {:?}, to: {:?}",
                   self.dim.slice(),
                   shape.slice())
        }
        // Check if contiguous, if not => copy all, else just adapt strides
        if self.is_standard_layout() {
            let cl = self.clone();
            ArrayBase {
                data: cl.data,
                ptr: cl.ptr,
                strides: shape.default_strides(),
                dim: shape,
            }
        } else {
            let v = self.iter().map(|x| x.clone()).collect::<Vec<A>>();
            unsafe {
                ArrayBase::from_vec_dim_unchecked(shape, v)
            }
        }
    }

    /// Transform the array into `shape`; any shape with the same number of
    /// elements is accepted, but the source array or view must be
    /// contiguous, otherwise we cannot rearrange the dimension.
    ///
    /// **Errors** if the shapes don't have the same number of elements.<br>
    /// **Errors** if the input array is not c-contiguous (this will be
    /// slightly improved in the future).
    ///
    /// ```
    /// use ndarray::{aview1, aview2};
    ///
    /// assert!(
    ///     aview1(&[1., 2., 3., 4.]).into_shape((2, 2)).unwrap()
    ///     == aview2(&[[1., 2.],
    ///                 [3., 4.]])
    /// );
    /// ```
    pub fn into_shape<E>(self, shape: E) -> Result<ArrayBase<S, E>, ShapeError>
        where E: Dimension
    {
        if shape.size_checked() != Some(self.dim.size()) {
            return Err(shape_error::incompatible_shapes(&self.dim, &shape));
        }
        // Check if contiguous, if not => copy all, else just adapt strides
        if self.is_standard_layout() {
            Ok(ArrayBase {
                data: self.data,
                ptr: self.ptr,
                strides: shape.default_strides(),
                dim: shape,
            })
        } else {
            Err(ShapeError::IncompatibleLayout)
        }
    }

    /// Act like a larger size and/or shape array by *broadcasting*
    /// into a larger shape, if possible.
    ///
    /// Return `None` if shapes can not be broadcast together.
    ///
    /// ***Background***
    ///
    ///  * Two axes are compatible if they are equal, or one of them is 1.
    ///  * In this instance, only the axes of the smaller side (self) can be 1.
    ///
    /// Compare axes beginning with the *last* axis of each shape.
    ///
    /// For example (1, 2, 4) can be broadcast into (7, 6, 2, 4)
    /// because its axes are either equal or 1 (or missing);
    /// while (2, 2) can *not* be broadcast into (2, 4).
    ///
    /// The implementation creates a view with strides set to zero for the
    /// axes that are to be repeated.
    ///
    /// The broadcasting documentation for Numpy has more information.
    ///
    /// ```
    /// use ndarray::{aview1, aview2};
    ///
    /// assert!(
    ///     aview1(&[1., 0.]).broadcast((10, 2)).unwrap()
    ///     == aview2(&[[1., 0.]; 10])
    /// );
    /// ```
    pub fn broadcast<E>(&self, dim: E) -> Option<ArrayView<A, E>>
        where E: Dimension
    {
        /// Return new stride when trying to grow `from` into shape `to`
        ///
        /// Broadcasting works by returning a "fake stride" where elements
        /// to repeat are in axes with 0 stride, so that several indexes point
        /// to the same element.
        ///
        /// **Note:** Cannot be used for mutable iterators, since repeating
        /// elements would create aliasing pointers.
        fn upcast<D: Dimension, E: Dimension>(to: &D, from: &E, stride: &E) -> Option<D> {
            let mut new_stride = to.clone();
            // begin at the back (the least significant dimension)
            // size of the axis has to either agree or `from` has to be 1
            if to.ndim() < from.ndim() {
                return None;
            }

            {
                let mut new_stride_iter = new_stride.slice_mut().iter_mut().rev();
                for ((er, es), dr) in from.slice().iter().rev()
                                        .zip(stride.slice().iter().rev())
                                        .zip(new_stride_iter.by_ref())
                {
                    /* update strides */
                    if *dr == *er {
                        /* keep stride */
                        *dr = *es;
                    } else if *er == 1 {
                        /* dead dimension, zero stride */
                        *dr = 0
                    } else {
                        return None;
                    }
                }

                /* set remaining strides to zero */
                for dr in new_stride_iter {
                    *dr = 0;
                }
            }
            Some(new_stride)
        }

        // Note: zero strides are safe precisely because we return an read-only view
        let broadcast_strides = match upcast(&dim, &self.dim, &self.strides) {
            Some(st) => st,
            None => return None,
        };
        unsafe { Some(ArrayView::new_(self.ptr, dim, broadcast_strides)) }
    }

    #[inline]
    fn broadcast_unwrap<E>(&self, dim: E) -> ArrayView<A, E>
        where E: Dimension,
    {
        #[cold]
        #[inline(never)]
        fn broadcast_panic<D, E>(from: &D, to: &E) -> !
            where D: Dimension,
                  E: Dimension,
        {
            panic!("Could not broadcast array from shape: {:?} to: {:?}",
                   from.slice(), to.slice())
        }

        match self.broadcast(dim.clone()) {
            Some(it) => it,
            None => broadcast_panic(&self.dim, &dim),
        }
    }

    /// Swap axes `ax` and `bx`.
    ///
    /// This does not move any data, it just adjusts the array’s dimensions
    /// and strides.
    ///
    /// **Panics** if the axes are out of bounds.
    ///
    /// ```
    /// use ndarray::arr2;
    ///
    /// let mut a = arr2(&[[1., 2., 3.]]);
    /// a.swap_axes(0, 1);
    /// assert!(
    ///     a == arr2(&[[1.], [2.], [3.]])
    /// );
    /// ```
    pub fn swap_axes(&mut self, ax: usize, bx: usize) {
        self.dim.slice_mut().swap(ax, bx);
        self.strides.slice_mut().swap(ax, bx);
    }

    /// Transpose the array by reversing axes.
    ///
    /// Transposition reverses the order of the axes (dimensions and strides)
    /// while retaining the same data.
    pub fn reversed_axes(mut self) -> ArrayBase<S, D> {
        self.dim.slice_mut().reverse();
        self.strides.slice_mut().reverse();
        self
    }


    /// Return a slice of the array’s backing data in memory order.
    ///
    /// **Note:** Data memory order may not correspond to the index order
    /// of the array. Neither is the raw data slice is restricted to just the
    /// array’s view.<br>
    /// **Note:** the slice may be empty.
    pub fn raw_data(&self) -> &[A] {
        self.data.slice()
    }

    /// Return a mutable slice of the array’s backing data in memory order.
    ///
    /// **Note:** Data memory order may not correspond to the index order
    /// of the array. Neither is the raw data slice is restricted to just the
    /// array’s view.<br>
    /// **Note:** the slice may be empty.
    ///
    /// **Note:** The data is uniquely held and nonaliased
    /// while it is mutably borrowed.
    pub fn raw_data_mut(&mut self) -> &mut [A]
        where S: DataMut,
    {
        self.ensure_unique();
        self.data.slice_mut()
    }

    fn pointer_is_inbounds(&self) -> bool {
        let slc = self.data.slice();
        if slc.is_empty() {
            // special case for data-less views
            return true;
        }
        let ptr = slc.as_ptr() as *mut _;
        let end =  unsafe {
            ptr.offset(slc.len() as isize)
        };
        self.ptr >= ptr && self.ptr <= end
    }

    /// Perform an elementwise assigment to `self` from `rhs`.
    ///
    /// If their shapes disagree, `rhs` is broadcast to the shape of `self`.
    ///
    /// **Panics** if broadcasting isn’t possible.
    pub fn assign<E: Dimension, S2>(&mut self, rhs: &ArrayBase<S2, E>)
        where S: DataMut,
              A: Clone,
              S2: Data<Elem=A>,
    {
        self.zip_mut_with(rhs, |x, y| *x = y.clone());
    }

    /// Perform an elementwise assigment to `self` from scalar `x`.
    pub fn assign_scalar(&mut self, x: &A)
        where S: DataMut, A: Clone,
    {
        self.unordered_foreach_mut(move |elt| *elt = x.clone());
    }

    fn zip_with_mut_same_shape<B, S2, E, F>(&mut self, rhs: &ArrayBase<S2, E>, mut f: F)
        where S: DataMut,
              S2: Data<Elem=B>,
              E: Dimension,
              F: FnMut(&mut A, &B)
    {
        debug_assert_eq!(self.shape(), rhs.shape());
        if let Some(self_s) = self.as_slice_mut() {
            if let Some(rhs_s) = rhs.as_slice() {
                let len = cmp::min(self_s.len(), rhs_s.len());
                let s = &mut self_s[..len];
                let r = &rhs_s[..len];
                for i in 0..len {
                    f(&mut s[i], &r[i]);
                }
                return;
            }
        }
        // otherwise, fall back to the outer iter
        self.zip_with_mut_outer_iter(rhs, f);
    }

    #[inline(always)]
    fn zip_with_mut_outer_iter<B, S2, E, F>(&mut self, rhs: &ArrayBase<S2, E>, mut f: F)
        where S: DataMut,
              S2: Data<Elem=B>,
              E: Dimension,
              F: FnMut(&mut A, &B)
    {
        debug_assert_eq!(self.shape(), rhs.shape());
        // otherwise, fall back to the outer iter
        let mut try_slices = true;
        let mut rows = self.inner_iter_mut().zip(rhs.inner_iter());
        for (mut s_row, r_row) in &mut rows {
            if try_slices {
                if let Some(self_s) = s_row.as_slice_mut() {
                    if let Some(rhs_s) = r_row.as_slice() {
                        let len = cmp::min(self_s.len(), rhs_s.len());
                        let s = &mut self_s[..len];
                        let r = &rhs_s[..len];
                        for i in 0..len {
                            f(&mut s[i], &r[i]);
                        }
                        continue;
                    }
                }
                try_slices = false;
            }
            unsafe {
                for i in 0..s_row.len() {
                    f(s_row.uget_mut(i), r_row.uget(i))
                }
            }
        }
    }

    fn zip_mut_with_elem<B, F>(&mut self, rhs_elem: &B, mut f: F)
        where S: DataMut,
              F: FnMut(&mut A, &B)
    {
        self.unordered_foreach_mut(move |elt| f(elt, rhs_elem));
    }

    // FIXME: Guarantee the order here or not?
    /// Traverse two arrays in unspecified order, in lock step,
    /// calling the closure `f` on each element pair.
    ///
    /// If their shapes disagree, `rhs` is broadcast to the shape of `self`.
    ///
    /// **Panics** if broadcasting isn’t possible.
    #[inline]
    pub fn zip_mut_with<B, S2, E, F>(&mut self, rhs: &ArrayBase<S2, E>, f: F)
        where S: DataMut,
              S2: Data<Elem=B>,
              E: Dimension,
              F: FnMut(&mut A, &B)
    {
        if rhs.dim.ndim() == 0 {
            // Skip broadcast from 0-dim array
            unsafe {
                let rhs_elem = &*rhs.ptr;
                self.zip_mut_with_elem(rhs_elem, f);
            }
        } else if self.dim.ndim() == rhs.dim.ndim() && self.shape() == rhs.shape() {
            self.zip_with_mut_same_shape(rhs, f);
        } else {
            let rhs_broadcast = rhs.broadcast_unwrap(self.dim());
            self.zip_with_mut_outer_iter(&rhs_broadcast, f);
        }
    }

    /// Traverse the array elements in order and apply a fold,
    /// returning the resulting value.
    pub fn fold<'a, F, B>(&'a self, mut init: B, mut f: F) -> B
        where F: FnMut(B, &'a A) -> B, A: 'a
    {
        if let Some(slc) = self.as_slice() {
            for elt in slc {
                init = f(init, elt);
            }
            return init;
        }
        for row in self.inner_iter() {
            for elt in row {
                init = f(init, elt);
            }
        }
        init
    }

    /// Apply `f` elementwise and return a new array with
    /// the results.
    ///
    /// Return an array with the same shape as *self*.
    ///
    /// ```
    /// use ndarray::arr2;
    ///
    /// let a = arr2(&[[ 0., 1.],
    ///                [-1., 2.]]);
    /// assert!(
    ///     a.map(|x| *x >= 1.0)
    ///     == arr2(&[[false, true],
    ///               [false, true]])
    /// );
    /// ```
    pub fn map<'a, B, F>(&'a self, mut f: F) -> OwnedArray<B, D>
        where F: FnMut(&'a A) -> B,
              A: 'a,
    {
        let mut res = Vec::with_capacity(self.dim.size());
        for elt in self.iter() {
            res.push(f(elt))
        }
        unsafe {
            ArrayBase::from_vec_dim_unchecked(self.dim.clone(), res)
        }
    }
}