1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
#[cfg(feature = "approx")]
mod approx_methods {
    use crate::imp_prelude::*;

    impl<A, S, D> ArrayBase<S, D>
    where
        S: Data<Elem = A>,
        D: Dimension,
    {
        /// A test for equality that uses the elementwise absolute difference to compute the
        /// approximate equality of two arrays.
        ///
        /// **Requires crate feature `"approx"`**
        pub fn abs_diff_eq<S2>(&self, other: &ArrayBase<S2, D>, epsilon: A::Epsilon) -> bool
        where
            A: ::approx::AbsDiffEq<S2::Elem>,
            A::Epsilon: Clone,
            S2: Data,
        {
            <Self as ::approx::AbsDiffEq<_>>::abs_diff_eq(self, other, epsilon)
        }

        /// A test for equality that uses an elementwise relative comparison if the values are far
        /// apart; and the absolute difference otherwise.
        ///
        /// **Requires crate feature `"approx"`**
        pub fn relative_eq<S2>(
            &self,
            other: &ArrayBase<S2, D>,
            epsilon: A::Epsilon,
            max_relative: A::Epsilon,
        ) -> bool
        where
            A: ::approx::RelativeEq<S2::Elem>,
            A::Epsilon: Clone,
            S2: Data,
        {
            <Self as ::approx::RelativeEq<_>>::relative_eq(self, other, epsilon, max_relative)
        }
    }
}

macro_rules! impl_approx_traits {
    ($approx:ident, $doc:expr) => {
        mod $approx {
            use crate::imp_prelude::*;
            use crate::Zip;
            use $approx::{AbsDiffEq, RelativeEq, UlpsEq};

            #[doc = $doc]
            impl<A, B, S, S2, D> AbsDiffEq<ArrayBase<S2, D>> for ArrayBase<S, D>
            where
                A: AbsDiffEq<B>,
                A::Epsilon: Clone,
                S: Data<Elem = A>,
                S2: Data<Elem = B>,
                D: Dimension,
            {
                type Epsilon = A::Epsilon;

                fn default_epsilon() -> A::Epsilon {
                    A::default_epsilon()
                }

                fn abs_diff_eq(&self, other: &ArrayBase<S2, D>, epsilon: A::Epsilon) -> bool {
                    if self.shape() != other.shape() {
                        return false;
                    }

                    Zip::from(self)
                        .and(other)
                        .all(move |a, b| A::abs_diff_eq(a, b, epsilon.clone()))
                }
            }

            #[doc = $doc]
            impl<A, B, S, S2, D> RelativeEq<ArrayBase<S2, D>> for ArrayBase<S, D>
            where
                A: RelativeEq<B>,
                A::Epsilon: Clone,
                S: Data<Elem = A>,
                S2: Data<Elem = B>,
                D: Dimension,
            {
                fn default_max_relative() -> A::Epsilon {
                    A::default_max_relative()
                }

                fn relative_eq(
                    &self,
                    other: &ArrayBase<S2, D>,
                    epsilon: A::Epsilon,
                    max_relative: A::Epsilon,
                ) -> bool {
                    if self.shape() != other.shape() {
                        return false;
                    }

                    Zip::from(self).and(other).all(move |a, b| {
                        A::relative_eq(a, b, epsilon.clone(), max_relative.clone())
                    })
                }
            }

            #[doc = $doc]
            impl<A, B, S, S2, D> UlpsEq<ArrayBase<S2, D>> for ArrayBase<S, D>
            where
                A: UlpsEq<B>,
                A::Epsilon: Clone,
                S: Data<Elem = A>,
                S2: Data<Elem = B>,
                D: Dimension,
            {
                fn default_max_ulps() -> u32 {
                    A::default_max_ulps()
                }

                fn ulps_eq(
                    &self,
                    other: &ArrayBase<S2, D>,
                    epsilon: A::Epsilon,
                    max_ulps: u32,
                ) -> bool {
                    if self.shape() != other.shape() {
                        return false;
                    }

                    Zip::from(self)
                        .and(other)
                        .all(move |a, b| A::ulps_eq(a, b, epsilon.clone(), max_ulps))
                }
            }

            #[cfg(test)]
            mod tests {
                use crate::prelude::*;
                use alloc::vec;
                use $approx::{
                    assert_abs_diff_eq, assert_abs_diff_ne, assert_relative_eq, assert_relative_ne,
                    assert_ulps_eq, assert_ulps_ne,
                };

                #[test]
                fn abs_diff_eq() {
                    let a: Array2<f32> = array![[0., 2.], [-0.000010001, 100000000.]];
                    let mut b: Array2<f32> = array![[0., 1.], [-0.000010002, 100000001.]];
                    assert_abs_diff_ne!(a, b);
                    b[(0, 1)] = 2.;
                    assert_abs_diff_eq!(a, b);

                    // Check epsilon.
                    assert_abs_diff_eq!(array![0.0f32], array![1e-40f32], epsilon = 1e-40f32);
                    assert_abs_diff_ne!(array![0.0f32], array![1e-40f32], epsilon = 1e-41f32);

                    // Make sure we can compare different shapes without failure.
                    let c = array![[1., 2.]];
                    assert_abs_diff_ne!(a, c);
                }

                #[test]
                fn relative_eq() {
                    let a: Array2<f32> = array![[1., 2.], [-0.000010001, 100000000.]];
                    let mut b: Array2<f32> = array![[1., 1.], [-0.000010002, 100000001.]];
                    assert_relative_ne!(a, b);
                    b[(0, 1)] = 2.;
                    assert_relative_eq!(a, b);

                    // Check epsilon.
                    assert_relative_eq!(array![0.0f32], array![1e-40f32], epsilon = 1e-40f32);
                    assert_relative_ne!(array![0.0f32], array![1e-40f32], epsilon = 1e-41f32);

                    // Make sure we can compare different shapes without failure.
                    let c = array![[1., 2.]];
                    assert_relative_ne!(a, c);
                }

                #[test]
                fn ulps_eq() {
                    let a: Array2<f32> = array![[1., 2.], [-0.000010001, 100000000.]];
                    let mut b: Array2<f32> = array![[1., 1.], [-0.000010002, 100000001.]];
                    assert_ulps_ne!(a, b);
                    b[(0, 1)] = 2.;
                    assert_ulps_eq!(a, b);

                    // Check epsilon.
                    assert_ulps_eq!(array![0.0f32], array![1e-40f32], epsilon = 1e-40f32);
                    assert_ulps_ne!(array![0.0f32], array![1e-40f32], epsilon = 1e-41f32);

                    // Make sure we can compare different shapes without failure.
                    let c = array![[1., 2.]];
                    assert_ulps_ne!(a, c);
                }
            }
        }
    };
}

#[cfg(feature = "approx")]
impl_approx_traits!(approx, "**Requires crate feature `\"approx\"`.**");

#[cfg(feature = "approx-0_5")]
impl_approx_traits!(approx_0_5, "**Requires crate feature `\"approx-0_5\"`.**");