1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
//! Example of translating `rk_step` function from SciPy.
//!
//! This snippet is a [selection of lines from
//! `rk.py`](https://github.com/scipy/scipy/blob/v1.0.0/scipy/integrate/_ivp/rk.py#L2-L78).
//! See the [license for this snippet](#scipy-license).
//!
//! ```python
//! import numpy as np
//!
//! def rk_step(fun, t, y, f, h, A, B, C, E, K):
//!     """Perform a single Runge-Kutta step.
//!     This function computes a prediction of an explicit Runge-Kutta method and
//!     also estimates the error of a less accurate method.
//!     Notation for Butcher tableau is as in [1]_.
//!     Parameters
//!     ----------
//!     fun : callable
//!         Right-hand side of the system.
//!     t : float
//!         Current time.
//!     y : ndarray, shape (n,)
//!         Current state.
//!     f : ndarray, shape (n,)
//!         Current value of the derivative, i.e. ``fun(x, y)``.
//!     h : float
//!         Step to use.
//!     A : list of ndarray, length n_stages - 1
//!         Coefficients for combining previous RK stages to compute the next
//!         stage. For explicit methods the coefficients above the main diagonal
//!         are zeros, so `A` is stored as a list of arrays of increasing lengths.
//!         The first stage is always just `f`, thus no coefficients for it
//!         are required.
//!     B : ndarray, shape (n_stages,)
//!         Coefficients for combining RK stages for computing the final
//!         prediction.
//!     C : ndarray, shape (n_stages - 1,)
//!         Coefficients for incrementing time for consecutive RK stages.
//!         The value for the first stage is always zero, thus it is not stored.
//!     E : ndarray, shape (n_stages + 1,)
//!         Coefficients for estimating the error of a less accurate method. They
//!         are computed as the difference between b's in an extended tableau.
//!     K : ndarray, shape (n_stages + 1, n)
//!         Storage array for putting RK stages here. Stages are stored in rows.
//!     Returns
//!     -------
//!     y_new : ndarray, shape (n,)
//!         Solution at t + h computed with a higher accuracy.
//!     f_new : ndarray, shape (n,)
//!         Derivative ``fun(t + h, y_new)``.
//!     error : ndarray, shape (n,)
//!         Error estimate of a less accurate method.
//!     References
//!     ----------
//!     .. [1] E. Hairer, S. P. Norsett G. Wanner, "Solving Ordinary Differential
//!            Equations I: Nonstiff Problems", Sec. II.4.
//!     """
//!     K[0] = f
//!     for s, (a, c) in enumerate(zip(A, C)):
//!         dy = np.dot(K[:s + 1].T, a) * h
//!         K[s + 1] = fun(t + c * h, y + dy)
//!
//!     y_new = y + h * np.dot(K[:-1].T, B)
//!     f_new = fun(t + h, y_new)
//!
//!     K[-1] = f_new
//!     error = np.dot(K.T, E) * h
//!
//!     return y_new, f_new, error
//! ```
//!
//! A direct translation to `ndarray` looks like this:
//!
//! ```
//! use ndarray::prelude::*;
//!
//! fn rk_step<F>(
//!     mut fun: F,
//!     t: f64,
//!     y: ArrayView1<f64>,
//!     f: ArrayView1<f64>,
//!     h: f64,
//!     a: &[ArrayView1<f64>],
//!     b: ArrayView1<f64>,
//!     c: ArrayView1<f64>,
//!     e: ArrayView1<f64>,
//!     mut k: ArrayViewMut2<f64>,
//! ) -> (Array1<f64>, Array1<f64>, Array1<f64>)
//! where
//!     F: FnMut(f64, ArrayView1<f64>) -> Array1<f64>,
//! {
//!     k.slice_mut(s![0, ..]).assign(&f);
//!     for (s, (a, c)) in a.iter().zip(c).enumerate() {
//!         let dy = k.slice(s![..s + 1, ..]).t().dot(a) * h;
//!         k.slice_mut(s![s + 1, ..])
//!             .assign(&(fun(t + c * h, (&y + &dy).view())));
//!     }
//!
//!     let y_new = &y + &(h * k.slice(s![..-1, ..]).t().dot(&b));
//!     let f_new = fun(t + h, y_new.view());
//!
//!     k.slice_mut(s![-1, ..]).assign(&f_new);
//!     let error = k.t().dot(&e) * h;
//!
//!     (y_new, f_new, error)
//! }
//! #
//! # fn main() {}
//! ```
//!
//! It's possible to improve the efficiency by doing the following:
//!
//! * Observe that `dy` is a temporary allocation. It's possible to allow the
//!   add operation to take ownership of `dy` to eliminate an extra allocation
//!   for the result of the addition. A similar situation occurs when computing
//!   `y_new`. See the comments in the example below.
//!
//! * Require the `fun` closure to mutate an existing view instead of
//!   allocating a new array for the result.
//!
//! * Don't return a newly allocated `f_new` array. If the caller wants this
//!   information, they can get it from the last row of `k`.
//!
//! * Use [`c.mul_add(h, t)`][f64.mul_add()] instead of `t + c * h`. This is
//!   faster and reduces the floating-point error. It might also be beneficial
//!   to use [`.scaled_add()`][.scaled_add()] or a combination of
//!   [`azip!()`][azip!] and [`.mul_add()`][f64.mul_add()] on the arrays in
//!   some places, but that's not demonstrated in the example below.
//!
//! ```
//! use ndarray::prelude::*;
//!
//! fn rk_step<F>(
//!     mut fun: F,
//!     t: f64,
//!     y: ArrayView1<f64>,
//!     f: ArrayView1<f64>,
//!     h: f64,
//!     a: &[ArrayView1<f64>],
//!     b: ArrayView1<f64>,
//!     c: ArrayView1<f64>,
//!     e: ArrayView1<f64>,
//!     mut k: ArrayViewMut2<f64>,
//! ) -> (Array1<f64>, Array1<f64>)
//! where
//!     F: FnMut(f64, ArrayView1<f64>, ArrayViewMut1<f64>),
//! {
//!     k.slice_mut(s![0, ..]).assign(&f);
//!     for (s, (a, c)) in a.iter().zip(c).enumerate() {
//!         let dy = k.slice(s![..s + 1, ..]).t().dot(a) * h;
//!         // Note that `dy` comes before `&y` in `dy + &y` in order to reuse the
//!         // `dy` allocation. (The addition operator will take ownership of `dy`
//!         // and assign the result to it instead of allocating a new array for the
//!         // result.) In contrast, you could use `&y + &dy`, but that would perform
//!         // an unnecessary memory allocation for the result, like NumPy does.
//!         fun(c.mul_add(h, t), (dy + &y).view(), k.slice_mut(s![s + 1, ..]));
//!     }
//!     // Similar case here — moving `&y` to the right hand side allows the addition
//!     // to reuse the allocated array on the left hand side.
//!     let y_new = h * k.slice(s![..-1, ..]).t().dot(&b) + &y;
//!     // Mutate the last row of `k` in-place instead of allocating a new array.
//!     fun(t + h, y_new.view(), k.slice_mut(s![-1, ..]));
//!
//!     let error = k.t().dot(&e) * h;
//!
//!     (y_new, error)
//! }
//! #
//! # fn main() {}
//! ```
//!
//! [f64.mul_add()]: https://doc.rust-lang.org/std/primitive.f64.html#method.mul_add
//! [.scaled_add()]: ../../../struct.ArrayBase.html#method.scaled_add
//! [azip!]: ../../../macro.azip.html
//!
//! ### SciPy license
//!
//! ```text
//! Copyright (c) 2001, 2002 Enthought, Inc.
//! All rights reserved.
//!
//! Copyright (c) 2003-2017 SciPy Developers.
//! All rights reserved.
//!
//! Redistribution and use in source and binary forms, with or without
//! modification, are permitted provided that the following conditions are met:
//!
//!   a. Redistributions of source code must retain the above copyright notice,
//!      this list of conditions and the following disclaimer.
//!   b. Redistributions in binary form must reproduce the above copyright
//!      notice, this list of conditions and the following disclaimer in the
//!      documentation and/or other materials provided with the distribution.
//!   c. Neither the name of Enthought nor the names of the SciPy Developers
//!      may be used to endorse or promote products derived from this software
//!      without specific prior written permission.
//!
//!
//! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
//! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
//! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
//! ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS
//! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
//! OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
//! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
//! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
//! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
//! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
//! THE POSSIBILITY OF SUCH DAMAGE.
//! ```