1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
use ndarray::{s, Array, ArrayBase, Axis, Data, Dimension, Ix3, Zip};
use num_traits::{Float, ToPrimitive};
use crate::{array_like, dim_minus_1, Mask};
pub fn median_filter<S>(mask: &ArrayBase<S, Ix3>) -> Mask
where
S: Data<Elem = bool>,
{
let range = |i, max| {
if i == 0 {
0..2
} else if i == max {
max - 1..max + 1
} else {
i - 1..i + 2
}
};
let (width, height, depth) = dim_minus_1(mask);
let ranges_x: Vec<_> = (0..=width).map(|x| range(x, width)).collect();
let ranges_y: Vec<_> = (0..=height).map(|y| range(y, height)).collect();
let ranges_z: Vec<_> = (0..=depth).map(|z| range(z, depth)).collect();
let mut new_mask = array_like(mask, mask.dim(), false);
Zip::indexed(&mut new_mask).for_each(|idx, new_mask| {
let r_x = &ranges_x[idx.0];
let r_y = &ranges_y[idx.1];
let r_z = &ranges_z[idx.2];
let nb_required = ((r_x.len() * r_y.len() * r_z.len()) as u8 - 1) / 2;
*new_mask = mask
.slice(s![r_x.clone(), r_y.clone(), r_z.clone()])
.iter()
.fold(0, |acc, &m| acc + m as u8)
> nb_required;
});
new_mask
}
pub fn gaussian_filter<S, A, D>(data: &ArrayBase<S, D>, sigma: A, truncate: A) -> Array<A, D>
where
S: Data<Elem = A>,
A: Float + ToPrimitive,
D: Dimension,
{
let mut data = data.to_owned();
let mut output = data.to_owned();
let weights = weights(sigma, truncate);
for d in 0..data.ndim() {
_gaussian_filter1d(&data, &weights, Axis(d), &mut output);
data.assign(&output);
}
output
}
pub fn gaussian_filter1d<S, A, D>(
data: &ArrayBase<S, D>,
sigma: A,
truncate: A,
axis: Axis,
) -> Array<A, D>
where
S: Data<Elem = A>,
A: Float + ToPrimitive,
D: Dimension,
{
let weights = weights(sigma, truncate);
let mut output = array_like(&data, data.dim(), A::zero());
_gaussian_filter1d(data, &weights, axis, &mut output);
output
}
fn _gaussian_filter1d<S, A, D>(
data: &ArrayBase<S, D>,
weights: &[A],
axis: Axis,
output: &mut Array<A, D>,
) where
S: Data<Elem = A>,
A: Float + ToPrimitive,
D: Dimension,
{
let half = weights.len() / 2;
let middle_weight = weights[half];
let n = data.len_of(axis);
if half > n {
panic!("Data size is too small for the inputs (sigma and truncate)");
}
let mut buffer = vec![A::zero(); n + 2 * half];
let input_it = data.lanes(axis).into_iter();
let output_it = output.lanes_mut(axis).into_iter();
for (input, mut o) in input_it.zip(output_it) {
unsafe {
let mut pos_b = 0;
let mut pos_i = half - 1;
for _ in 0..half {
*buffer.get_unchecked_mut(pos_b) = *input.uget(pos_i);
pos_b += 1;
pos_i = pos_i.wrapping_sub(1);
}
let mut pos_i = 0;
for _ in 0..n {
*buffer.get_unchecked_mut(pos_b) = *input.uget(pos_i);
pos_b += 1;
pos_i += 1;
}
pos_i = n - 1;
for _ in 0..half {
*buffer.get_unchecked_mut(pos_b) = *input.uget(pos_i);
pos_b += 1;
pos_i = pos_i.wrapping_sub(1);
}
for idx in 0..n {
let s = half + idx;
let mut pos_l = s - 1;
let mut pos_r = s + 1;
let mut sum = *buffer.get_unchecked(s) * middle_weight;
for &w in &weights[half + 1..] {
sum = sum + (*buffer.get_unchecked(pos_l) + *buffer.get_unchecked(pos_r)) * w;
pos_l = pos_l.wrapping_sub(1);
pos_r += 1;
}
*o.uget_mut(idx) = sum;
}
}
}
}
fn weights<A>(sigma: A, truncate: A) -> Vec<A>
where
A: Float,
{
let radius = (truncate * sigma + A::from(0.5).unwrap()).to_isize().unwrap();
let sigma2 = sigma.powi(2);
let mut phi_x: Vec<_> = (-radius..=radius)
.map(|x| (A::from(-0.5).unwrap() / sigma2 * A::from(x.pow(2)).unwrap()).exp())
.collect();
let sum = phi_x.iter().fold(A::zero(), |acc, &v| acc + v);
phi_x.iter_mut().for_each(|v| *v = *v / sum);
phi_x
}