1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
use crate::bounding_volume::AABB;
use crate::math::{Isometry, Point, Vector};
use na::{self, RealField};
use crate::partitioning::{BestFirstVisitStatus, BestFirstVisitor};
use crate::query::{self, PointQuery, Proximity};
use crate::shape::{CompositeShape, Shape};

/// Proximity between a composite shape (`Mesh`, `Compound`) and any other shape.
pub fn proximity_composite_shape_shape<N: RealField, G1: ?Sized>(
    m1: &Isometry<N>,
    g1: &G1,
    m2: &Isometry<N>,
    g2: &dyn Shape<N>,
    margin: N,
) -> Proximity
where
    G1: CompositeShape<N>,
{
    assert!(
        margin >= na::zero(),
        "The proximity margin must be positive or null."
    );

    let mut visitor = CompositeShapeAgainstAnyInterfVisitor::new(m1, g1, m2, g2, margin);

    match g1.bvh().best_first_search(&mut visitor) {
        None => Proximity::Disjoint,
        Some(prox) => prox.1,
    }
}

/// Proximity between a shape and a composite (`Mesh`, `Compound`) shape.
pub fn proximity_shape_composite_shape<N: RealField, G2: ?Sized>(
    m1: &Isometry<N>,
    g1: &dyn Shape<N>,
    m2: &Isometry<N>,
    g2: &G2,
    margin: N,
) -> Proximity
where
    G2: CompositeShape<N>,
{
    proximity_composite_shape_shape(m2, g2, m1, g1, margin)
}

struct CompositeShapeAgainstAnyInterfVisitor<'a, N: 'a + RealField, G1: ?Sized + 'a> {
    msum_shift: Vector<N>,
    msum_margin: Vector<N>,

    m1: &'a Isometry<N>,
    g1: &'a G1,
    m2: &'a Isometry<N>,
    g2: &'a dyn Shape<N>,
    margin: N,
}

impl<'a, N: RealField, G1: ?Sized> CompositeShapeAgainstAnyInterfVisitor<'a, N, G1>
where G1: CompositeShape<N>
{
    pub fn new(
        m1: &'a Isometry<N>,
        g1: &'a G1,
        m2: &'a Isometry<N>,
        g2: &'a dyn Shape<N>,
        margin: N,
    ) -> CompositeShapeAgainstAnyInterfVisitor<'a, N, G1>
    {
        let ls_m2 = m1.inverse() * m2.clone();
        let ls_aabb2 = g2.aabb(&ls_m2);

        CompositeShapeAgainstAnyInterfVisitor {
            msum_shift: -ls_aabb2.center().coords,
            msum_margin: ls_aabb2.half_extents(),
            m1: m1,
            g1: g1,
            m2: m2,
            g2: g2,
            margin: margin,
        }
    }
}

impl<'a, N: RealField, G1: ?Sized> BestFirstVisitor<N, usize, AABB<N>>
    for CompositeShapeAgainstAnyInterfVisitor<'a, N, G1>
where G1: CompositeShape<N>
{
    type Result = Proximity;

    fn visit(&mut self, best: N, bv: &AABB<N>, data: Option<&usize>) -> BestFirstVisitStatus<N, Self::Result> {
        // Compute the minkowski sum of the two AABBs.
        let msum = AABB::new(
            *bv.mins() + self.msum_shift + (-self.msum_margin),
            *bv.maxs() + self.msum_shift + self.msum_margin,
        );

        // Compute the distance to the origin.
        let dist = msum.distance_to_point(&Isometry::identity(), &Point::origin(), true);
        let mut res = BestFirstVisitStatus::Continue { cost: dist, result: None };

        if let Some(b) = data {
            if dist < best {
                self.g1
                    .map_part_at(*b, self.m1, &mut |m1, g1| {
                        match query::proximity(m1, g1, self.m2, self.g2, self.margin) {
                            Proximity::WithinMargin => {
                                res = BestFirstVisitStatus::Continue {
                                    cost: self.margin,
                                    result: Some(Proximity::WithinMargin),
                                }
                            },
                            Proximity::Intersecting => {
                                res = BestFirstVisitStatus::ExitEarly(Some(Proximity::Intersecting))
                            }
                            Proximity::Disjoint => {},
                        }
                    });
            }
        }

        res
    }
}