1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
//! Implementation of the NBLAST algorithm for quantifying neurons' morphological similarity.
//! Originally published in
//! [Costa et al. (2016)](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4961245/)
//! and implemented as part of the
//! [NeuroAnatomy Toolbox](http://natverse.org/).
//!
//! # Algorithm
//!
//! Each neuron is passed in as a point cloud sample (the links between the points are not required).
//! A tangent vector is calculated for each point, based on its location and that of its nearest neighbors.
//! Additionally, an `alpha` value is calculated, which describes how colinear the neighbors are,
//! between 0 and 1.
//!
//! To query the similarity of neuron `Q` to neuron `T`:
//!
//! - Take a point and its associated tangent in `Q`
//!   - Find the nearest point in `T`, and its associated tangent
//!   - Compute the distance between the two points
//!   - Compute the absolute dot product of the two tangents
//!   - Apply some empirically-derived function to the (distance, dot_product) tuple
//!     - As published, this is the log probabity ratio of any pair belonging to closely related or unrelated neurons
//! - Repeat for all points, summing the results
//!
//! The result is not easily comparable:
//! it is highly dependent on the size of the point cloud
//! and is not commutative, i.e. `f(Q, T) != f(T, Q)`.
//!
//! To make queries between two pairs of neurons comparable,
//! the result can be normalized by the "self-hit" score of the query, i.e. `f(Q, Q)`.
//!
//! To make the result commutative, the forward `f(Q, T)` and backward `f(T, Q)` scores can be combined in some way.
//! This library supports several means (arithmetic, harmonic, and geometric), the minimum, and the maximum.
//! The choice will depend on the application.
//! This can be applied after the scores are normalized.
//!
//! The backbone of the neuron is the most easily sampled and most stereotyped part of its morphology,
//! and therefore should be focused on for comparisons.
//! However, a lot of cable is in dendrites, which can cause problems when reconstructed in high resolution.
//! Queries can be weighted towards straighter, less branched regions by multiplying the absolute dot product
//! for each point match by the geometric mean of the two alpha values.
//!
//! More information on the algorithm can be found
//! [here](http://jefferislab.org/si/nblast).
//!
//! # Usage
//!
//! The [QueryNeuron](trait.QueryNeuron.html) and [TargetNeuron](trait.TargetNeuron.html) traits
//! define types which can be compared with NBLAST.
//! All `TargetNeuron`s are also `QueryNeuron`s.
//! Both are [Neuron](trait.Neuron.html)s.
//!
//! [PointsTangentsAlphas](struct.PointsTangentsAlphas.html) and
//! [RstarNeuron](struct.RstarNeuron.html) implement these, respectively.
//! Both can be created with pre-calculated tangents and alphas, or calculate them on instantiation.
//!
//! The [NblastArena](struct.NblastArena.html) contains a collection of `TargetNeuron`s
//! and a function to apply to pointwise [DistDot](struct.DistDot.html)s to generate
//! a score for that point match, for convenient many-to-many comparisons.
//! A pre-calculated table of point match scores can be converted into a function with [table_to_fn](fn.table_to_fn.html).
//!
//! ```
//! use nblast::{NblastArena, ScoreCalc, Neuron, Symmetry};
//!
//! // Create a lookup table for the point match scores
//! let smat = ScoreCalc::table_from_bins(
//!   vec![0.0, 0.1, 0.25, 0.5, 1.0, 5.0, f64::INFINITY], // distance thresholds
//!   vec![0.0, 0.2, 0.4, 0.6, 0.8, 1.0], // dot product thresholds
//!   vec![ // table values in dot-major order
//!     0.0, 0.1, 0.2, 0.3, 0.4,
//!     1.0, 1.1, 1.2, 1.3, 1.4,
//!     2.0, 2.1, 2.2, 2.3, 2.4,
//!     3.0, 3.1, 3.2, 3.3, 3.4,
//!     4.0, 4.1, 4.2, 4.3, 4.4,
//!     5.0, 5.1, 5.2, 5.3, 5.4,
//!   ],
//! ).expect("could not build score matrix");
//!
//! // See the ScoreMatrixBuilder for constructing a score matrix from test data.
//!
//! // Create an arena to hold your neurons with this score function, and
//! // whether it should scale the dot products by the colinearity value.
//! let mut arena = NblastArena::new(smat, false);
//! // if the "parallel" feature is enabled, use e.g. `.with_threads(5)` to set 5 threads for multi-neuron queries
//!
//! let mut rng = fastrand::Rng::with_seed(1991);
//!
//! fn random_points(n: usize, rng: &mut fastrand::Rng) -> Vec<[f64; 3]> {
//!     std::iter::repeat_with(|| [
//!         10.0 * rng.f64(),
//!         10.0 * rng.f64(),
//!         10.0 * rng.f64(),
//!     ]).take(n).collect()
//! }
//!
//! // Add some neurons built from points and a neighborhood size,
//! // returning their indices in the arena
//! let idx1 = arena.add_neuron(
//!     Neuron::new(random_points(6, &mut rng), 5).expect("cannot construct neuron")
//! );
//! let idx2 = arena.add_neuron(
//!     Neuron::new(random_points(8, &mut rng), 5).expect("cannot construct neuron")
//! );
//!
//! // get a raw score (not normalized by self-hit, no symmetry)
//! let raw = arena.query_target(idx1, idx2, false, &None);
//!
//! // get all the scores, normalized, made symmetric, and with a centroid distance cut-off
//! let results = arena.all_v_all(true, &Some(Symmetry::ArithmeticMean), Some(10.0));
//!
//! ```
use nalgebra::base::{Matrix3, Unit, Vector3};
use std::collections::{HashMap, HashSet};
use table_lookup::InvalidRangeTable;

#[cfg(feature = "parallel")]
pub use rayon;
#[cfg(feature = "parallel")]
use rayon::prelude::*;

pub use nalgebra;

mod smat;
pub use smat::ScoreMatrixBuilder;

mod table_lookup;
pub use table_lookup::{BinLookup, NdBinLookup, RangeTable};

pub mod neurons;
pub use neurons::{NblastNeuron, Neuron, QueryNeuron, TargetNeuron};

#[cfg(not(any(
    feature = "nabo",
    feature = "rstar",
    feature = "kiddo",
    feature = "bosque"
)))]
compile_error!("no spatial backend feature enabled");

/// Floating point precision type used internally
pub type Precision = f64;
/// 3D point type used internally
pub type Point3 = [Precision; 3];
/// 3D unit-length vector type used internally
pub type Normal3 = Unit<Vector3<Precision>>;

fn centroid<T: IntoIterator<Item = Point3>>(points: T) -> Point3 {
    let mut len: f64 = 0.0;
    let mut out = [0.0; 3];
    for p in points {
        len += 1.0;
        for idx in 0..3 {
            out[idx] += p[idx];
        }
    }
    for el in &mut out {
        *el /= len;
    }
    out
}

fn geometric_mean(a: Precision, b: Precision) -> Precision {
    (a.max(0.0) * b.max(0.0)).sqrt()
}

fn harmonic_mean(a: Precision, b: Precision) -> Precision {
    if a <= 0.0 || b <= 0.0 {
        0.0
    } else {
        2.0 / (1.0 / a + 1.0 / b)
    }
}

/// A tangent, alpha pair associated with a point.
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct TangentAlpha {
    pub tangent: Normal3,
    pub alpha: Precision,
}

impl TangentAlpha {
    fn new_from_points<'a>(points: impl Iterator<Item = &'a Point3>) -> Self {
        let inertia = calc_inertia(points);
        let eig = inertia.symmetric_eigen();
        let mut sum = 0.0;
        let mut vals: Vec<_> = eig
            .eigenvalues
            .iter()
            .enumerate()
            .map(|(idx, v)| {
                sum += v;
                (idx, v)
            })
            .collect();
        vals.sort_by(|a, b| b.1.partial_cmp(a.1).unwrap());
        let alpha = (vals[0].1 - vals[1].1) / sum;

        // ? new_unchecked
        let tangent = Unit::new_normalize(eig.eigenvectors.column(vals[0].0).into());

        Self { tangent, alpha }
    }
}

/// Enumeration of methods to ensure that queries are symmetric/ commutative
/// (i.e. `f(q, t) = f(t, q)`).
/// Specific applications will require different methods.
/// Geometric and harmonic means bound the output to be >= 0.0.
/// Geometric mean may work best with non-normalized queries.
/// Max may work if an unknown one of the query and target is incomplete.
#[derive(Default)]
pub enum Symmetry {
    ArithmeticMean,
    #[default]
    GeometricMean,
    HarmonicMean,
    Min,
    Max,
}

impl Symmetry {
    pub fn apply(&self, query_score: Precision, target_score: Precision) -> Precision {
        match self {
            Symmetry::ArithmeticMean => (query_score + target_score) / 2.0,
            Symmetry::GeometricMean => geometric_mean(query_score, target_score),
            Symmetry::HarmonicMean => harmonic_mean(query_score, target_score),
            Symmetry::Min => query_score.min(target_score),
            Symmetry::Max => query_score.max(target_score),
        }
    }
}

/// The result of comparing two (point, tangent) tuples.
/// Contains the Euclidean distance between the points,
/// and the absolute dot product of the (unit) tangents,
/// i.e. the absolute cosine of the angle between them
/// (possibly scaled by the geometric mean of the alphas).
#[derive(Debug, Clone, Copy, PartialEq)]
pub struct DistDot {
    pub dist: Precision,
    pub dot: Precision,
}

impl DistDot {
    fn to_idxs(
        self,
        dist_thresholds: &[Precision],
        dot_thresholds: &[Precision],
    ) -> (usize, usize) {
        let dist_bin = find_bin_binary(self.dist, dist_thresholds);
        let dot_bin = find_bin_binary(self.dot, dot_thresholds);
        (dist_bin, dot_bin)
    }

    fn to_linear_idx(self, dist_thresholds: &[Precision], dot_thresholds: &[Precision]) -> usize {
        let (row_idx, col_idx) = self.to_idxs(dist_thresholds, dot_thresholds);
        row_idx * dot_thresholds.len() + col_idx
    }
}

impl Default for DistDot {
    fn default() -> Self {
        Self {
            dist: 0.0,
            dot: 1.0,
        }
    }
}

fn subtract_points(p1: &Point3, p2: &Point3) -> Point3 {
    let mut result = [0.0; 3];
    for ((rref, v1), v2) in result.iter_mut().zip(p1).zip(p2) {
        *rref = v1 - v2;
    }
    result
}

fn center_points<'a>(points: impl Iterator<Item = &'a Point3>) -> impl Iterator<Item = Point3> {
    let mut points_vec = Vec::default();
    let mut means: Point3 = [0.0, 0.0, 0.0];
    for pt in points {
        points_vec.push(*pt);
        for (sum, v) in means.iter_mut().zip(pt.iter()) {
            *sum += v;
        }
    }

    for val in means.iter_mut() {
        *val /= points_vec.len() as Precision;
    }
    let subtract = move |p| subtract_points(&p, &means);
    points_vec.into_iter().map(subtract)
}

fn dot(a: &[Precision], b: &[Precision]) -> Precision {
    a.iter()
        .zip(b.iter())
        .fold(0.0, |sum, (ax, bx)| sum + ax * bx)
}

/// Calculate inertia from iterator of points.
/// This is an implementation of matrix * matrix.transpose(),
/// to sidestep the fixed-size constraints of linalg's built-in classes.
/// Only calculates the lower triangle and diagonal.
fn calc_inertia<'a>(points: impl Iterator<Item = &'a Point3>) -> Matrix3<Precision> {
    let mut xs = Vec::default();
    let mut ys = Vec::default();
    let mut zs = Vec::default();
    for point in center_points(points) {
        xs.push(point[0]);
        ys.push(point[1]);
        zs.push(point[2]);
    }
    Matrix3::new(
        dot(&xs, &xs),
        0.0,
        0.0,
        dot(&ys, &xs),
        dot(&ys, &ys),
        0.0,
        dot(&zs, &xs),
        dot(&zs, &ys),
        dot(&zs, &zs),
    )
}

/// Minimal struct to use as the query (not the target) of an NBLAST
/// comparison.
/// Equivalent to "dotprops" in the reference implementation.
#[derive(Clone)]
pub struct PointsTangentsAlphas {
    /// Locations of points in point cloud.
    points: Vec<Point3>,
    /// For each point in the cloud, a unit-length vector and a colinearity metric.
    tangents_alphas: Vec<TangentAlpha>,
}

impl PointsTangentsAlphas {
    pub fn new(points: Vec<Point3>, tangents_alphas: Vec<TangentAlpha>) -> Self {
        Self {
            points,
            tangents_alphas,
        }
    }
}

impl NblastNeuron for PointsTangentsAlphas {
    fn len(&self) -> usize {
        self.points.len()
    }

    fn points(&self) -> impl Iterator<Item = Point3> + '_ {
        self.points.iter().cloned()
    }

    fn centroid(&self) -> Point3 {
        centroid(self.points())
    }

    fn tangents(&self) -> impl Iterator<Item = Normal3> + '_ {
        self.tangents_alphas.iter().map(|ta| ta.tangent)
    }

    fn alphas(&self) -> impl Iterator<Item = Precision> + '_ {
        self.tangents_alphas.iter().map(|ta| ta.alpha)
    }
}

impl QueryNeuron for PointsTangentsAlphas {
    fn query_dist_dots<'a>(
        &'a self,
        target: &'a impl TargetNeuron,
        use_alpha: bool,
    ) -> impl Iterator<Item = DistDot> + 'a {
        self.points
            .iter()
            .zip(self.tangents_alphas.iter())
            .map(move |(q_pt, q_ta)| {
                let alpha = if use_alpha { Some(q_ta.alpha) } else { None };
                target.nearest_match_dist_dot(q_pt, &q_ta.tangent, alpha)
            })
    }

    fn query(
        &self,
        target: &impl TargetNeuron,
        use_alpha: bool,
        score_calc: &ScoreCalc,
    ) -> Precision {
        let mut score_total: Precision = 0.0;

        for (q_pt, q_ta) in self.points.iter().zip(self.tangents_alphas.iter()) {
            let alpha = if use_alpha { Some(q_ta.alpha) } else { None };
            score_total +=
                score_calc.calc(&target.nearest_match_dist_dot(q_pt, &q_ta.tangent, alpha));
        }
        score_total
    }

    fn self_hit(&self, score_calc: &ScoreCalc, use_alpha: bool) -> Precision {
        if use_alpha {
            self.tangents_alphas
                .iter()
                .map(|ta| {
                    score_calc.calc(&DistDot {
                        dist: 0.0,
                        dot: ta.alpha,
                    })
                })
                .fold(0.0, |total, s| total + s)
        } else {
            score_calc.calc(&DistDot {
                dist: 0.0,
                dot: 1.0,
            }) * self.len() as Precision
        }
    }
}

// ? consider using nalgebra's Point3 in PointWithIndex, for consistency
// ^ can't implement rstar::Point for nalgebra::geometry::Point3 because of orphan rules
// TODO: replace Precision with float generic

/// Given the upper bounds of a number of bins, find which bin the value falls into.
/// Values outside of the range fall into the bottom or top bin.
fn find_bin_binary(value: Precision, upper_bounds: &[Precision]) -> usize {
    let raw = match upper_bounds.binary_search_by(|bound| bound.partial_cmp(&value).unwrap()) {
        Ok(v) => v + 1,
        Err(v) => v,
    };
    let highest = upper_bounds.len() - 1;
    if raw > highest {
        highest
    } else {
        raw
    }
}

/// Convert an empirically-derived table mapping pointwise distance and tangent absolute dot products
/// to pointwise scores into a function which can be passed to neuron queries.
/// These scores are then summed across all points in the query to give the raw NBLAST score.
///
/// Cells are passed in dist-major order
/// i.e. if the original table had distance bins in the left margin
/// and dot product bins on the top margin,
/// the cells should be given in row-major order.
///
/// Each bin is identified by its upper bound:
/// the lower bound is implicitly the previous bin's upper bound, or zero.
/// The output is constrained to the limits of the table.
pub fn table_to_fn(
    dist_thresholds: Vec<Precision>,
    dot_thresholds: Vec<Precision>,
    cells: Vec<Precision>,
) -> impl Fn(&DistDot) -> Precision {
    if dist_thresholds.len() * dot_thresholds.len() != cells.len() {
        panic!("Number of cells in table do not match number of columns/rows");
    }

    move |dd: &DistDot| -> Precision { cells[dd.to_linear_idx(&dist_thresholds, &dot_thresholds)] }
}

pub fn range_table_to_fn(
    range_table: RangeTable<Precision, Precision>,
) -> impl Fn(&DistDot) -> Precision {
    move |dd: &DistDot| -> Precision { *range_table.lookup(&[dd.dist, dd.dot]) }
}

trait Location {
    fn location(&self) -> &Point3;

    fn distance2_to<T: Location>(&self, other: T) -> Precision {
        self.location()
            .iter()
            .zip(other.location().iter())
            .map(|(a, b)| a * a + b * b)
            .sum()
    }

    fn distance_to<T: Location>(&self, other: T) -> Precision {
        self.distance2_to(other).sqrt()
    }
}

impl Location for Point3 {
    fn location(&self) -> &Point3 {
        self
    }
}

impl Location for &Point3 {
    fn location(&self) -> &Point3 {
        self
    }
}

#[derive(Clone)]
struct NeuronSelfHit<N: QueryNeuron> {
    neuron: N,
    self_hit: Precision,
    centroid: [Precision; 3],
}

impl<N: QueryNeuron> NeuronSelfHit<N> {
    fn new(neuron: N, self_hit: Precision) -> Self {
        let centroid = neuron.centroid();
        Self {
            neuron,
            self_hit,
            centroid,
        }
    }

    fn score(&self) -> Precision {
        self.self_hit
    }
}

/// Different ways of converting point match statistics into a single score.
#[derive(Debug, Clone)]
pub enum ScoreCalc {
    // Func(Box<dyn Fn(&DistDot) -> Precision + Sync>),
    Table(RangeTable<Precision, Precision>),
}

impl ScoreCalc {
    /// Construct a table from `N` dist bins, `M` dot bins,
    /// and the values in `(N-1)*(M-1)` cells.
    ///
    /// The bins vecs must be monotonically increasing.
    /// The first and last values of each
    /// are effectively ignored and replaced by -inf and +inf respectively.
    /// Values are given in dot-major order, i.e.
    /// cells in the same dist bin are next to each other.
    pub fn table_from_bins(
        dists: Vec<Precision>,
        dots: Vec<Precision>,
        values: Vec<Precision>,
    ) -> Result<Self, InvalidRangeTable> {
        Ok(Self::Table(RangeTable::new_from_bins(
            vec![dists, dots],
            values,
        )?))
    }

    /// Apply the score function.
    pub fn calc(&self, dist_dot: &DistDot) -> Precision {
        match self {
            // Self::Func(func) => func(dist_dot),
            Self::Table(tab) => *tab.lookup(&[dist_dot.dist, dist_dot.dot]),
        }
    }
}

/// Struct for caching a number of neurons for multiple comparable NBLAST queries.
#[allow(dead_code)]
pub struct NblastArena<N>
where
    N: TargetNeuron,
{
    neurons_scores: Vec<NeuronSelfHit<N>>,
    score_calc: ScoreCalc,
    use_alpha: bool,
    // shows as dead code without parallel feature
    threads: Option<usize>,
}

pub type NeuronIdx = usize;

impl<N> NblastArena<N>
where
    N: TargetNeuron + Sync,
{
    /// By default, runs in serial.
    /// See `NblastArena.with_threads` if the "parallel" feature is enabled.
    pub fn new(score_calc: ScoreCalc, use_alpha: bool) -> Self {
        Self {
            neurons_scores: Vec::default(),
            score_calc,
            use_alpha,
            threads: None,
        }
    }

    /// 0 means use all available.
    #[cfg(feature = "parallel")]
    pub fn with_threads(self, threads: usize) -> Self {
        Self {
            neurons_scores: self.neurons_scores,
            score_calc: self.score_calc,
            use_alpha: self.use_alpha,
            threads: Some(threads),
        }
    }

    pub fn size_of(&self, idx: NeuronIdx) -> Option<usize> {
        self.neurons_scores.get(idx).map(|n| n.neuron.len())
    }

    fn next_id(&self) -> NeuronIdx {
        self.neurons_scores.len()
    }

    /// Returns an index which is then used to make queries.
    pub fn add_neuron(&mut self, neuron: N) -> NeuronIdx {
        let idx = self.next_id();
        let self_hit = neuron.self_hit(&self.score_calc, self.use_alpha);
        self.neurons_scores
            .push(NeuronSelfHit::new(neuron, self_hit));
        idx
    }

    /// Make a single query using the given indexes.
    /// `normalize` divides the result by the self-hit score of the query neuron.
    /// `symmetry`, if `Some`, also calculates the reverse score
    /// (normalizing it if necessary), and then applies a function to ensure
    /// that the query is symmetric/ commutative.
    pub fn query_target(
        &self,
        query_idx: NeuronIdx,
        target_idx: NeuronIdx,
        normalize: bool,
        symmetry: &Option<Symmetry>,
    ) -> Option<Precision> {
        let q = self.neurons_scores.get(query_idx)?;

        if query_idx == target_idx {
            return if normalize {
                Some(1.0)
            } else {
                Some(q.score())
            };
        }

        let t = self.neurons_scores.get(target_idx)?;
        let mut score = q.neuron.query(&t.neuron, self.use_alpha, &self.score_calc);
        if normalize {
            score /= q.score()
        }
        match symmetry {
            Some(s) => {
                let mut score2 = t.neuron.query(&q.neuron, self.use_alpha, &self.score_calc);
                if normalize {
                    score2 /= t.score();
                }
                Some(s.apply(score, score2))
            }
            _ => Some(score),
        }
    }

    /// Make many queries using the Cartesian product of the query and target indices.
    ///
    /// See [query_target](#method.query_target) for details on `normalize` and `symmetry`.
    /// Neurons whose centroids are greater than `max_centroid_dist` apart will return NaN.
    /// Indices which do not exist will be silently ignored.
    pub fn queries_targets(
        &self,
        query_idxs: &[NeuronIdx],
        target_idxs: &[NeuronIdx],
        normalize: bool,
        symmetry: &Option<Symmetry>,
        max_centroid_dist: Option<Precision>,
    ) -> HashMap<(NeuronIdx, NeuronIdx), Precision> {
        // filter out neurons which don't exist,
        // but leave filters for centroid distance, duplication, and self-hits to query_target_pairs
        let pairs: Vec<_> = query_idxs
            .iter()
            .filter_map(|q| {
                let q2 = *q;
                if q2 >= self.len() {
                    None
                } else {
                    Some(target_idxs.iter().filter_map(move |t| {
                        if t >= &self.len() {
                            None
                        } else {
                            Some((q2, *t))
                        }
                    }))
                }
            })
            .flatten()
            .collect();

        self.query_target_pairs(&pairs, normalize, symmetry, max_centroid_dist)
    }

    /// See [query_target](#method.query_target) for details on `normalize` and `symmetry`.
    /// Neurons whose centroids are greater than `max_centroid_dist` apart will return NaN.
    /// Indices which do not exist will be silently ignored.
    pub fn query_target_pairs(
        &self,
        query_target_idxs: &[(NeuronIdx, NeuronIdx)],
        normalize: bool,
        symmetry: &Option<Symmetry>,
        max_centroid_dist: Option<Precision>,
    ) -> HashMap<(NeuronIdx, NeuronIdx), Precision> {
        let mut max_jobs = query_target_idxs.len();

        let mut out = HashMap::with_capacity(query_target_idxs.len());
        if symmetry.is_some() {
            max_jobs *= 2;
        }
        let mut jobs = HashSet::with_capacity(max_jobs);
        for (q, t) in query_target_idxs {
            if q > &self.len() || t > &self.len() {
                continue;
            }

            let key = (*q, *t);

            if q == t {
                out.insert(
                    key,
                    if normalize {
                        1.0
                    } else {
                        self.neurons_scores[*q].score()
                    },
                );
                continue;
            } else {
                out.insert(key, Precision::NAN);
            }

            if jobs.contains(&(*q, *t)) {
                continue;
            }

            if let Some(d) = max_centroid_dist {
                if !self
                    .centroids_within_distance(*q, *t, d)
                    .expect("Already checked indices")
                {
                    continue;
                }
            }

            jobs.insert(key);
            if symmetry.is_some() {
                jobs.insert((key.1, key.0));
            }
        }

        let raw = pairs_to_raw(self, &jobs.into_iter().collect::<Vec<_>>(), normalize);

        for (key, value) in out.iter_mut() {
            // if a query doesn't appear in jobs, it was ignored
            // as being self-hit (already populated),
            // or centroids too far (already NaN)
            if let Some(forward) = raw.get(key) {
                if let Some(s) = symmetry {
                    // if symmetry is some and the forward request exists,
                    // so does the backward
                    let backward = raw[&(key.1, key.0)];
                    // ! this applies symmetry twice if idx is in both queries and targets,
                    // but it's a cheap function
                    *value = s.apply(*forward, backward);
                } else {
                    *value = *forward;
                }
            }
        }

        out
    }

    pub fn centroids_within_distance(
        &self,
        query_idx: NeuronIdx,
        target_idx: NeuronIdx,
        max_centroid_dist: Precision,
    ) -> Option<bool> {
        if query_idx == target_idx {
            return Some(true);
        }
        self.neurons_scores.get(query_idx).and_then(|q| {
            self.neurons_scores
                .get(target_idx)
                .map(|t| q.centroid.distance_to(t.centroid) < max_centroid_dist)
        })
    }

    pub fn self_hit(&self, idx: NeuronIdx) -> Option<Precision> {
        self.neurons_scores.get(idx).map(|n| n.score())
    }

    /// Query every neuron against every other neuron.
    /// See [queries_targets](#method.queries_targets) for more details.
    pub fn all_v_all(
        &self,
        normalize: bool,
        symmetry: &Option<Symmetry>,
        max_centroid_dist: Option<Precision>,
    ) -> HashMap<(NeuronIdx, NeuronIdx), Precision> {
        let idxs: Vec<NeuronIdx> = (0..self.len()).collect();
        self.queries_targets(&idxs, &idxs, normalize, symmetry, max_centroid_dist)
    }

    pub fn is_empty(&self) -> bool {
        self.neurons_scores.is_empty()
    }

    /// Number of neurons in the arena.
    pub fn len(&self) -> usize {
        self.neurons_scores.len()
    }

    pub fn points(&self, idx: NeuronIdx) -> Option<impl Iterator<Item = Point3> + '_> {
        self.neurons_scores.get(idx).map(|n| n.neuron.points())
    }

    pub fn tangents(&self, idx: NeuronIdx) -> Option<impl Iterator<Item = Normal3> + '_> {
        self.neurons_scores.get(idx).map(|n| n.neuron.tangents())
    }

    pub fn alphas(&self, idx: NeuronIdx) -> Option<impl Iterator<Item = Precision> + '_> {
        self.neurons_scores.get(idx).map(|n| n.neuron.alphas())
    }
}

fn pairs_to_raw_serial<N: TargetNeuron + Sync>(
    arena: &NblastArena<N>,
    pairs: &[(NeuronIdx, NeuronIdx)],
    normalize: bool,
) -> HashMap<(NeuronIdx, NeuronIdx), Precision> {
    pairs
        .iter()
        .filter_map(|(q_idx, t_idx)| {
            arena
                .query_target(*q_idx, *t_idx, normalize, &None)
                .map(|s| ((*q_idx, *t_idx), s))
        })
        .collect()
}

#[cfg(not(feature = "parallel"))]
fn pairs_to_raw<N>(
    arena: &NblastArena<N>,
    pairs: &[(NeuronIdx, NeuronIdx)],
    normalize: bool,
) -> HashMap<(NeuronIdx, NeuronIdx), Precision>
where
    N: TargetNeuron + Sync,
{
    pairs_to_raw_serial(arena, pairs, normalize)
}

#[cfg(feature = "parallel")]
fn pairs_to_raw<N: TargetNeuron + Sync>(
    arena: &NblastArena<N>,
    pairs: &[(NeuronIdx, NeuronIdx)],
    normalize: bool,
) -> HashMap<(NeuronIdx, NeuronIdx), Precision> {
    if let Some(t) = arena.threads {
        let pool = rayon::ThreadPoolBuilder::new()
            .num_threads(t)
            .build()
            .unwrap();
        pool.install(|| {
            pairs
                .par_iter()
                .filter_map(|(q_idx, t_idx)| {
                    arena
                        .query_target(*q_idx, *t_idx, normalize, &None)
                        .map(|s| ((*q_idx, *t_idx), s))
                })
                .collect()
        })
    } else {
        pairs_to_raw_serial(arena, pairs, normalize)
    }
}

#[cfg(test)]
mod test {
    use super::*;

    const EPSILON: Precision = 0.001;
    const N_NEIGHBORS: usize = 5;

    fn add_points(a: &Point3, b: &Point3) -> Point3 {
        let mut out = [0., 0., 0.];
        for (idx, (x, y)) in a.iter().zip(b.iter()).enumerate() {
            out[idx] = x + y;
        }
        out
    }

    fn make_points(offset: &Point3, step: &Point3, count: usize) -> Vec<Point3> {
        let mut out = Vec::default();
        out.push(*offset);

        for _ in 0..count - 1 {
            let to_push = add_points(out.last().unwrap(), step);
            out.push(to_push);
        }

        out
    }

    #[test]
    fn construct() {
        let points = make_points(&[0., 0., 0.], &[1., 0., 0.], 10);
        Neuron::new(points, N_NEIGHBORS).unwrap();
    }

    fn is_close(val1: Precision, val2: Precision) -> bool {
        println!("Comparing values:\n\tval1: {:?}\n\tval2: {:?}", val1, val2);
        (val1 - val2).abs() < EPSILON
    }

    fn assert_close(val1: Precision, val2: Precision) {
        if !is_close(val1, val2) {
            panic!("Not close:\n\t{:?}\n\t{:?}", val1, val2);
        }
    }

    #[test]
    fn unit_tangents_eig() {
        let (points, _, _) = tangent_data();
        let tangent = TangentAlpha::new_from_points(points.iter()).tangent;
        assert_close(tangent.dot(&tangent), 1.0)
    }

    fn equivalent_tangents(tan1: &Normal3, tan2: &Normal3) -> bool {
        is_close(tan1.dot(tan2).abs(), 1.0)
    }

    fn tangent_data() -> (Vec<Point3>, Normal3, Precision) {
        // calculated from implementation known to be correct
        let tangent = Unit::new_normalize(Vector3::from_column_slice(&[
            -0.939_392_2,
            0.313_061_82,
            0.139_766_18,
        ]));

        // points in first row of data/dotprops/ChaMARCM-F000586_seg002.csv
        let points = vec![
            [
                329.679_962_158_203,
                72.718_803_405_761_7,
                31.028_469_085_693_4,
            ],
            [
                328.647_399_902_344,
                73.046_119_689_941_4,
                31.537_061_691_284_2,
            ],
            [
                335.219_879_150_391,
                70.710_479_736_328_1,
                30.398_145_675_659_2,
            ],
            [
                332.611_389_160_156,
                72.322_929_382_324_2,
                30.887_334_823_608_4,
            ],
            [
                331.770_782_470_703,
                72.434_440_612_793,
                31.169_372_558_593_8,
            ],
        ];

        let alpha = 0.844_842_871_450_449;

        (points, tangent, alpha)
    }

    #[test]
    fn test_tangent_eig() {
        let (points, exp_tan, _exp_alpha) = tangent_data();
        let ta = TangentAlpha::new_from_points(points.iter());
        if !equivalent_tangents(&ta.tangent, &exp_tan) {
            panic!(
                "Non-equivalent tangents:\n\t{:?}\n\t{:?}",
                ta.tangent, exp_tan
            )
        }
        // tested from the python side
        // assert_close(ta.alpha, exp_alpha);
    }

    #[test]
    fn test_neuron() {
        let (points, exp_tan, _exp_alpha) = tangent_data();
        let tgt = Neuron::new(points, N_NEIGHBORS).unwrap();
        assert!(equivalent_tangents(
            &tgt.tangents().next().unwrap(),
            &exp_tan
        ));
        // tested from the python side
        // assert_close(tgt.alphas()[0], exp_alpha);
    }

    /// dist_thresholds, dot_thresholds, values
    fn score_mat() -> (Vec<Precision>, Vec<Precision>, Vec<Precision>) {
        let dists = vec![10.0, 20.0, 30.0, 40.0, 50.0];
        let dots = vec![0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0];
        let mut values = vec![];
        let n_values = dots.len() * dists.len();
        for v in 0..n_values {
            values.push(v as Precision);
        }
        (dists, dots, values)
    }

    #[test]
    fn test_score_calc() {
        let (dists, dots, values) = score_mat();
        let func = table_to_fn(dists, dots, values);
        assert_close(
            func(&DistDot {
                dist: 0.0,
                dot: 0.0,
            }),
            0.0,
        );
        assert_close(
            func(&DistDot {
                dist: 0.0,
                dot: 0.1,
            }),
            1.0,
        );
        assert_close(
            func(&DistDot {
                dist: 11.0,
                dot: 0.0,
            }),
            10.0,
        );
        assert_close(
            func(&DistDot {
                dist: 55.0,
                dot: 0.0,
            }),
            40.0,
        );
        assert_close(
            func(&DistDot {
                dist: 55.0,
                dot: 10.0,
            }),
            49.0,
        );
        assert_close(
            func(&DistDot {
                dist: 15.0,
                dot: 0.15,
            }),
            11.0,
        );
    }

    #[test]
    fn test_find_bin_binary() {
        let dots = vec![0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0];
        assert_eq!(find_bin_binary(0.0, &dots), 0);
        assert_eq!(find_bin_binary(0.15, &dots), 1);
        assert_eq!(find_bin_binary(0.95, &dots), 9);
        assert_eq!(find_bin_binary(-10.0, &dots), 0);
        assert_eq!(find_bin_binary(10.0, &dots), 9);
        assert_eq!(find_bin_binary(0.1, &dots), 1);
    }

    // #[test]
    // fn score_function() {
    //     let dist_thresholds = vec![1.0, 2.0];
    //     let dot_thresholds = vec![0.5, 1.0];
    //     let cells = vec![1.0, 2.0, 4.0, 8.0];

    //     let score_calc = ScoreCalc::Func(Box::new(table_to_fn(dist_thresholds, dot_thresholds, cells)));

    //     let q_points = make_points(&[0., 0., 0.], &[1.0, 0.0, 0.0], 10);
    //     let query = PointsTangentsAlphas::new(q_points.clone(), N_NEIGHBORS)
    //         .expect("Query construction failed");
    //     let query2 = RstarNeuron::new(&q_points, N_NEIGHBORS).expect("Construction failed");
    //     let target = RstarNeuron::new(
    //         &make_points(&[0.5, 0., 0.], &[1.1, 0., 0.], 10),
    //         N_NEIGHBORS,
    //     )
    //     .expect("Construction failed");

    //     assert_close(
    //         query.query(&target, false, &score_calc),
    //         query2.query(&target, false, &score_calc),
    //     );
    //     assert_close(
    //         query.self_hit(&score_calc, false),
    //         query2.self_hit(&score_calc, false),
    //     );
    //     let score = query.query(&query2, false, &score_calc);
    //     let self_hit = query.self_hit(&score_calc, false);
    //     println!("score: {:?}, self-hit {:?}", score, self_hit);
    //     assert_close(
    //         query.query(&query2, false, &score_calc),
    //         query.self_hit(&score_calc, false),
    //     );
    // }

    #[test]
    fn arena() {
        let dist_thresholds = vec![0.0, 1.0, 2.0];
        let dot_thresholds = vec![0.0, 0.5, 1.0];
        let cells = vec![1.0, 2.0, 4.0, 8.0];

        // let score_calc = ScoreCalc::Func(Box::new(table_to_fn(dist_thresholds, dot_thresholds, cells)));
        let score_calc = ScoreCalc::Table(
            RangeTable::new_from_bins(vec![dist_thresholds, dot_thresholds], cells).unwrap(),
        );

        let query =
            Neuron::new(make_points(&[0., 0., 0.], &[1., 0., 0.], 10), N_NEIGHBORS).unwrap();
        let target =
            Neuron::new(make_points(&[0.5, 0., 0.], &[1.1, 0., 0.], 10), N_NEIGHBORS).unwrap();

        let mut arena = NblastArena::new(score_calc, false);
        let q_idx = arena.add_neuron(query);
        let t_idx = arena.add_neuron(target);

        let no_norm = arena
            .query_target(q_idx, t_idx, false, &None)
            .expect("should exist");
        let self_hit = arena
            .query_target(q_idx, q_idx, false, &None)
            .expect("should exist");

        assert!(
            arena
                .query_target(q_idx, t_idx, true, &None)
                .expect("should exist")
                - no_norm / self_hit
                < EPSILON
        );
        assert_eq!(
            arena.query_target(q_idx, t_idx, false, &Some(Symmetry::ArithmeticMean)),
            arena.query_target(t_idx, q_idx, false, &Some(Symmetry::ArithmeticMean)),
        );

        let out = arena.queries_targets(&[q_idx, t_idx], &[t_idx, q_idx], false, &None, None);
        assert_eq!(out.len(), 4);
    }

    fn test_symmetry(symmetry: &Symmetry, a: Precision, b: Precision) {
        assert_close(symmetry.apply(a, b), symmetry.apply(b, a))
    }

    fn test_symmetry_multiple(symmetry: &Symmetry) {
        for (a, b) in vec![(0.3, 0.7), (0.0, 0.7), (-1.0, 0.7), (100.0, 1000.0)].into_iter() {
            test_symmetry(symmetry, a, b);
        }
    }

    #[test]
    fn symmetry_arithmetic() {
        test_symmetry_multiple(&Symmetry::ArithmeticMean)
    }

    #[test]
    fn symmetry_harmonic() {
        test_symmetry_multiple(&Symmetry::HarmonicMean)
    }

    #[test]
    fn symmetry_geometric() {
        test_symmetry_multiple(&Symmetry::GeometricMean)
    }

    #[test]
    fn symmetry_min() {
        test_symmetry_multiple(&Symmetry::Min)
    }

    #[test]
    fn symmetry_max() {
        test_symmetry_multiple(&Symmetry::Max)
    }

    // #[test]
    // fn alpha_changes_results() {
    //     let (points, _, _) = tangent_data();
    //     let neuron = RstarNeuron::new(points, N_NEIGHBORS).unwrap();
    //     let score_calc = ScoreCalc::Func(Box::new(|dd: &DistDot| dd.dot));

    //     let sh = neuron.self_hit(&score_calc, false);
    //     let sh_a = neuron.self_hit(&score_calc, true);
    //     assert!(!is_close(sh, sh_a));

    //     let q = neuron.query(&neuron, false, &score_calc);
    //     let q_a = neuron.query(&neuron, true, &score_calc);

    //     assert!(!is_close(q, q_a));
    // }
}