1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
use crate::enu::ENU;
use crate::Access;
use na::{RealField, Vector3};
use std::convert::From;
use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};

/// North East Down vector
///
/// This struct represents a vector in the NED coordinate system.
/// See: [NED](https://en.wikipedia.org/wiki/North_east_down) for a general
/// description.
#[derive(Debug, Copy, Clone, PartialEq)]
pub struct NED<N: RealField>(Vector3<N>);

impl<N: RealField> NED<N> {
    /// Create a new NED vector
    pub fn new(n: N, e: N, d: N) -> NED<N> {
        NED(Vector3::new(n, e, d))
    }

    /// Computes the L2 (Euclidean) norm of this vector
    pub fn norm(&self) -> N {
        self.0.norm()
    }
}

impl<N: RealField + Copy> NED<N> {
    /// Get the North component of this vector
    pub fn north(&self) -> N {
        self.0.x
    }

    /// Get the East component of this vector
    pub fn east(&self) -> N {
        self.0.y
    }

    /// Get the Down component of this vector
    pub fn down(&self) -> N {
        self.0.z
    }
}

impl<N: RealField + Copy + Neg<Output = N>> From<NED<N>> for ENU<N> {
    /// Convert `NED` vectors into `ENU`
    fn from(e: NED<N>) -> Self {
        ENU::new(e.east(), e.north(), -e.down())
    }
}

impl<N: RealField + Copy + Add<N, Output = N>> Add<NED<N>> for NED<N> {
    type Output = NED<N>;
    fn add(self, right: NED<N>) -> NED<N> {
        NED(self.0 + right.0)
    }
}

impl<N: RealField + Copy + AddAssign<N>> AddAssign<NED<N>> for NED<N> {
    fn add_assign(&mut self, right: NED<N>) {
        self.0 += right.0
    }
}

impl<N: RealField + Copy + Sub<N, Output = N>> Sub<NED<N>> for NED<N> {
    type Output = NED<N>;
    fn sub(self, right: NED<N>) -> NED<N> {
        NED(self.0 - right.0)
    }
}

impl<N: RealField + Copy + SubAssign<N>> SubAssign<NED<N>> for NED<N> {
    fn sub_assign(&mut self, right: NED<N>) {
        self.0 -= right.0
    }
}

impl<N: RealField + Copy + Mul<N, Output = N>> Mul<N> for NED<N> {
    type Output = NED<N>;
    fn mul(self, right: N) -> NED<N> {
        NED(self.0 * right)
    }
}

impl<N: RealField + Copy + MulAssign<N>> MulAssign<N> for NED<N> {
    fn mul_assign(&mut self, right: N) {
        self.0 *= right
    }
}

impl<N: RealField + Copy + Div<N, Output = N>> Div<N> for NED<N> {
    type Output = NED<N>;
    fn div(self, right: N) -> NED<N> {
        NED(self.0 / right)
    }
}

impl<N: RealField + Copy + DivAssign<N>> DivAssign<N> for NED<N> {
    fn div_assign(&mut self, right: N) {
        self.0 /= right
    }
}

impl<N: RealField> Access<Vector3<N>> for NED<N> {
    fn access(self) -> Vector3<N> {
        self.0
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::enu::ENU;

    quickcheck! {
        fn create_ned(n: f32, e: f32, d: f32) -> () {
            NED::new(n, e, d);
        }

        fn get_components(n: f32, e: f32, d: f32) -> () {
            let vec = NED::new(n, e, d);
            assert_eq!(vec.north(), n);
            assert_eq!(vec.east(), e);
            assert_eq!(vec.down(), d);
        }

        fn into_enu(n: f32, e: f32, d: f32) -> () {
            let ned = NED::new(n, e, d);
            let enu: ENU<_> = ned.into();
            assert_eq!(n, enu.north());
            assert_eq!(e, enu.east());
            assert_eq!(d, -enu.up());
        }

        fn add_enu(n: f32, e: f32, d: f32) -> () {
            let ned = NED::new(n, e, d);
            let enu = ENU::new(e, n, -d);
            let sum = enu + ned;
            let twi = ned * 2.0;
            assert_eq!(sum.north(), twi.north());
            assert_eq!(sum.east(), twi.east());
            assert_eq!(sum.up(), -twi.down());
        }
    }
}