1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#![no_std]

use byteorder::ByteOrder as _;
use core::{iter, slice};
use embedded_hal::blocking::i2c;

#[cfg(feature = "embedded-hal-adc")]
mod hal_unproven;

#[cfg(feature = "embedded-hal-adc")]
pub use hal_unproven::*;

mod constants;
use constants::*;

pub type Result<T> = core::result::Result<T, Error>;

#[derive(Debug)]
pub enum Error {
    I2cError,
    PowerupFailed,
}

pub struct Nau7802<D: i2c::Read + i2c::Write> {
    i2c_dev: D,
}

impl<D: i2c::Read + i2c::Write> Nau7802<D> {
    const DEVICE_ADDRESS: u8 = 0x2A;

    #[inline]
    pub fn new(i2c_dev: D) -> Result<Self> {
        Self::new_with_settings(i2c_dev, Ldo::L3v3, Gain::G128, SamplesPerSecond::SPS320)
    }

    pub fn new_with_settings(
        i2c_dev: D,
        ldo: Ldo,
        gain: Gain,
        sps: SamplesPerSecond,
    ) -> Result<Self> {
        let mut adc = Self { i2c_dev };

        adc.start_reset()?;
        // need 1 ms delay here maybe?
        adc.finish_reset()?;
        adc.power_up()?;
        adc.set_ldo(ldo)?;
        adc.set_gain(gain)?;
        adc.set_sample_rate(sps)?;
        adc.misc_init()?;
        adc.begin_afe_calibration()?;

        Ok(adc)
    }

    pub fn destroy(self) -> D {
        let Self { i2c_dev } = self;
        i2c_dev
    }

    pub fn data_available(&mut self) -> Result<bool> {
        self.get_bit(Register::PuCtrl, PuCtrlBits::CR)
    }

    /// Checks for new data, returns nb::Error::WouldBlock if unavailable
    pub fn read(&mut self) -> nb::Result<i32, Error> {
        let data_available = self.data_available().map_err(nb::Error::Other)?;

        if !data_available {
            return Err(nb::Error::WouldBlock);
        }

        self.read_unchecked().map_err(nb::Error::Other)
    }

    /// assumes that data_avaiable has been called and returned true
    pub fn read_unchecked(&mut self) -> Result<i32> {
        self.request_register(Register::AdcoB2)?;

        let mut buf = [0u8; 3]; // will hold an i24
        self.i2c_dev
            .read(Self::DEVICE_ADDRESS, &mut buf)
            .map_err(|_| Error::I2cError)?;

        let adc_result = byteorder::BigEndian::read_i24(&buf);
        Ok(adc_result)
    }

    pub fn begin_afe_calibration(&mut self) -> Result<()> {
        self.set_bit(Register::Ctrl2, Ctrl2RegisterBits::Cals)
    }

    pub fn poll_afe_calibration_status(&mut self) -> Result<AfeCalibrationStatus> {
        if self.get_bit(Register::Ctrl2, Ctrl2RegisterBits::Cals)? {
            return Ok(AfeCalibrationStatus::InProgress);
        }

        if self.get_bit(Register::Ctrl2, Ctrl2RegisterBits::CalError)? {
            return Ok(AfeCalibrationStatus::Failure);
        }

        Ok(AfeCalibrationStatus::Success)
    }

    pub fn set_sample_rate(&mut self, sps: SamplesPerSecond) -> Result<()> {
        const SPS_MASK: u8 = 0b10001111;
        const SPS_START_BIT_IDX: u8 = 4;

        self.set_function_helper(Register::Ctrl2, SPS_MASK, SPS_START_BIT_IDX, sps as _)
    }

    pub fn set_gain(&mut self, gain: Gain) -> Result<()> {
        const GAIN_MASK: u8 = 0b11111000;
        const GAIN_START_BIT: u8 = 0;

        self.set_function_helper(Register::Ctrl1, GAIN_MASK, GAIN_START_BIT, gain as _)
    }

    pub fn set_ldo(&mut self, ldo: Ldo) -> Result<()> {
        const LDO_MASK: u8 = 0b11000111;
        const LDO_START_BIT: u8 = 3;

        self.set_function_helper(Register::Ctrl1, LDO_MASK, LDO_START_BIT, ldo as _)?;

        self.set_bit(Register::PuCtrl, PuCtrlBits::AVDDS)
    }

    pub fn power_up(&mut self) -> Result<()> {
        const NUM_ATTEMPTS: usize = 100;

        self.set_bit(Register::PuCtrl, PuCtrlBits::PUD)?;
        self.set_bit(Register::PuCtrl, PuCtrlBits::PUA)?;

        let check_powered_up = || self.get_bit(Register::PuCtrl, PuCtrlBits::PUR);

        let powered_up = iter::repeat_with(check_powered_up)
            .take(NUM_ATTEMPTS)
            .filter_map(Result::ok)
            .any(|rdy| rdy == true);

        if powered_up {
            Ok(())
        } else {
            Err(Error::PowerupFailed)
        }
    }

    pub fn start_reset(&mut self) -> Result<()> {
        self.set_bit(Register::PuCtrl, PuCtrlBits::RR)
    }

    pub fn finish_reset(&mut self) -> Result<()> {
        self.clear_bit(Register::PuCtrl, PuCtrlBits::RR)
    }

    pub fn misc_init(&mut self) -> Result<()> {
        const TURN_OFF_CLK_CHPL: u8 = 0x30;

        // Turn off CLK_CHP. From 9.1 power on sequencing
        self.set_register(Register::Adc, TURN_OFF_CLK_CHPL)?;

        // Enable 330pF decoupling cap on chan 2. From 9.14 application circuit note
        self.set_bit(Register::PgaPwr, PgaPwrRegisterBits::CapEn)
    }

    fn set_function_helper(
        &mut self,
        reg: Register,
        mask: u8,
        start_idx: u8,
        new_val: u8,
    ) -> Result<()> {
        let mut val = self.get_register(reg)?;
        val &= mask;
        val |= new_val << start_idx;

        self.set_register(reg, val)
    }

    fn set_bit<B: RegisterBits>(&mut self, addr: Register, bit_idx: B) -> Result<()> {
        let mut val = self.get_register(addr)?;
        val |= 1 << bit_idx.get();
        self.set_register(addr, val)
    }

    fn clear_bit<B: RegisterBits>(&mut self, addr: Register, bit_idx: B) -> Result<()> {
        let mut val = self.get_register(addr)?;
        val &= !(1 << bit_idx.get());
        self.set_register(addr, val)
    }

    fn get_bit<B: RegisterBits>(&mut self, addr: Register, bit_idx: B) -> Result<bool> {
        let mut val = self.get_register(addr)?;
        val &= 1 << bit_idx.get();
        Ok(val != 0)
    }

    fn set_register(&mut self, reg: Register, val: u8) -> Result<()> {
        let transaction = [reg as _, val];

        self.i2c_dev
            .write(Self::DEVICE_ADDRESS, &transaction)
            .map_err(|_| Error::I2cError)
    }

    fn get_register(&mut self, reg: Register) -> Result<u8> {
        self.request_register(reg)?;

        let mut val = 0;
        self.i2c_dev
            .read(Self::DEVICE_ADDRESS, slice::from_mut(&mut val))
            .map_err(|_| Error::I2cError)?;

        Ok(val)
    }

    fn request_register(&mut self, reg: Register) -> Result<()> {
        let reg = reg as u8;

        self.i2c_dev
            .write(Self::DEVICE_ADDRESS, slice::from_ref(&reg))
            .map_err(|_| Error::I2cError)
    }
}