1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
//! Items related to the `App` type and the application context in general.
//!
//! See here for items relating to the event loop, device access, creating and managing windows,
//! streams and more.
//!
//! - [**App**](./struct.App.html) - provides a context and API for windowing, devices, etc.
//! - [**Proxy**](./struct.Proxy.html) - a handle to an **App** that may be used from a non-main
//! thread.
//! - [**LoopMode**](./enum.LoopMode.html) - describes the behaviour of the application event loop.
use crate::draw;
use crate::event::{self, Event, Key, LoopEvent, Update};
use crate::frame::{Frame, RawFrame};
use crate::geom;
use crate::state;
use crate::time::DurationF64;
use crate::wgpu;
use crate::window::{self, Window};
use find_folder;
use instant::Instant;
use std::cell::{RefCell, RefMut};
use std::collections::HashMap;
use std::future::Future;
use std::path::PathBuf;
use std::pin::Pin;
use std::sync::atomic::{self, AtomicBool};
use std::sync::Arc;
use std::time::Duration;
use std::{self, future};
use wgpu_upstream::InstanceDescriptor;
use winit;
use winit::event_loop::ControlFlow;
/// The user function type for initialising their model.
pub type ModelFn<Model> = fn(&App) -> Model;
/// The user function type for updating their model in accordance with some event.
pub type EventFn<Model, Event> = fn(&App, &mut Model, Event);
/// The user function type for updating the user model within the application loop.
pub type UpdateFn<Model> = fn(&App, &mut Model, Update);
/// The user function type for drawing their model to the surface of a single window.
pub type ViewFn<Model> = fn(&App, &Model, Frame);
/// A shorthand version of `ViewFn` for sketches where the user does not need a model.
pub type SketchViewFn = fn(&App, Frame);
/// The user function type allowing them to consume the `model` when the application exits.
pub type ExitFn<Model> = fn(&App, Model);
/// The **App**'s view function.
enum View<Model = ()> {
/// A view function allows for viewing the user's model.
WithModel(ViewFn<Model>),
/// A **Simple** view function does not require a user **Model**. Simpler to get started.
Sketch(SketchViewFn),
}
/// A nannou `App` builder.
pub struct Builder<M = (), E = Event> {
model: Box<dyn FnOnce(&App) -> Box<dyn Future<Output = M> + '_>>,
config: Config,
event: Option<EventFn<M, E>>,
update: Option<UpdateFn<M>>,
default_view: Option<View<M>>,
exit: Option<ExitFn<M>>,
create_default_window: bool,
default_window_size: Option<DefaultWindowSize>,
capture_frame_timeout: Option<Option<Duration>>,
max_capture_frame_jobs: Option<u32>,
backends: wgpu::Backends,
}
/// A nannou `Sketch` builder.
pub struct SketchBuilder<E = Event> {
builder: Builder<(), E>,
}
enum DefaultWindowSize {
/// Default window size in logical coordinates.
Logical(winit::dpi::LogicalSize<u32>),
/// Fullscreen on whatever the primary monitor is at the time of window creation.
Fullscreen,
}
/// The default `model` function used when none is specified by the user.
fn default_model(_: &App) -> () {
()
}
/// Each nannou application has a single **App** instance. This **App** represents the entire
/// context of the application.
///
/// The **App** provides access to most application, windowing and "IO" related APIs. In other
/// words, if you need access to windowing, the active wgpu devices, etc, the **App** will provide
/// access to this.
///
/// The **App** owns and manages:
///
/// - The **window and input event loop** used to drive the application forward.
/// - **All windows** for graphics and user input. Windows can be referenced via their IDs.
/// - The sharing of wgpu devices between windows.
/// - A default **Draw** instance for ease of use.
/// - A map of channels for submitting user input updates to active **Ui**s.
pub struct App {
config: RefCell<Config>,
default_window_size: Option<DefaultWindowSize>,
max_capture_frame_jobs: u32,
capture_frame_timeout: Option<Duration>,
pub(crate) event_loop_window_target: Option<EventLoopWindowTarget>,
pub(crate) event_loop_proxy: Proxy,
pub(crate) windows: RefCell<HashMap<window::Id, Window>>,
/// The wgpu backends to choose between.
backends: wgpu::Backends,
/// The main wgpu instance.
instance: wgpu::Instance,
/// A map of active wgpu physical device adapters.
adapters: wgpu::AdapterMap,
draw_state: DrawState,
/// The window that is currently in focus.
pub(crate) focused_window: RefCell<Option<window::Id>>,
/// The current state of the `Mouse`.
pub mouse: state::Mouse,
/// State of the keyboard keys.
///
/// `mods` provides state of each of the modifier keys: `shift`, `ctrl`, `alt`, `logo`.
///
/// `down` is the set of keys that are currently pressed.
///
/// NOTE: `down` this is tracked by the nannou `App` so issues might occur if e.g. a key is
/// pressed while the app is in focus and then released when out of focus. Eventually we should
/// change this to query the OS somehow, but I don't think `winit` provides a way to do this
/// yet.
pub keys: state::Keys,
/// Key time measurements tracked by the App.
///
/// `duration.since_start` specifies the duration since the app started running.
///
/// `duration.since_prev_update` specifies the duration since the previous update event.
pub duration: state::Time,
/// The time in seconds since the `App` started running.
///
/// Primarily, this field is a convenience that removes the need to call
/// `app.duration.since_start.secs()`. Normally we would try to avoid using such an ambiguous
/// field name, however due to the sheer amount of use that this value has we feel it is
/// beneficial to provide easier access.
///
/// This value is of the same type as the scalar value used for describing space in animations.
/// This makes it very easy to animate graphics and create changes over time without having to
/// cast values or repeatedly calculate it from a `Duration` type. A small example might be
/// `app.time.sin()` for simple oscillation behaviour.
///
/// **Note:** This is suitable for use in short sketches, however should be avoided in long
/// running installations. This is because the "resolution" of floating point values reduces as
/// the number becomes higher. Instead, we recommend using `app.duration.since_start` or
/// `app.duration.since_prev_update` to access a more precise form of app time.
pub time: f32,
}
/// Miscellaneous app configuration parameters.
#[derive(Debug)]
struct Config {
loop_mode: LoopMode,
exit_on_escape: bool,
fullscreen_on_shortcut: bool,
}
// Draw state managed by the **App**.
#[derive(Debug)]
struct DrawState {
draw: RefCell<draw::Draw>,
renderers: RefCell<HashMap<window::Id, RefCell<draw::Renderer>>>,
}
/// A handle to the **App** that can be shared across threads. This may be used to "wake up" the
/// **App**'s inner event loop.
#[derive(Clone)]
pub struct Proxy {
event_loop_proxy: winit::event_loop::EventLoopProxy<()>,
// Whether or not a wakeup is already queued.
//
// Used to avoid spuriously calling `EventLoopProxy::send_event` as this can be expensive on
// some platforms.
wakeup_queued: Arc<AtomicBool>,
}
// State related specifically to the application loop, shared between loop modes.
struct LoopState {
updates_since_event: u64,
loop_start: Instant,
last_update: Instant,
total_updates: u64,
}
/// The mode in which the **App** is currently running the event loop and emitting `Update` events.
#[derive(Clone, Debug, PartialEq)]
pub enum LoopMode {
/// Synchronises `Update` events with requests for a new frame for the surface.
///
/// The result of using this loop mode is similar to using vsync in traditional applications.
/// E.g. if you have one window running on a monitor with a 60hz refresh rate, your update will
/// get called at a fairly consistent interval that is close to 60 times per second.
RefreshSync,
/// Specifies that the application is continuously looping at a consistent rate.
///
/// **NOTE:** This currently behaves the same as `RefreshSync`. Need to upate this to handled a
/// fix step properly in the future. See #456.
Rate {
/// The minimum interval between emitted updates.
update_interval: Duration,
},
/// Waits for user input, window, device and wake-up events to occur before producing `Update`
/// events.
///
/// This is particularly useful for low-energy GUIs that only need to update when some sort of
/// input has occurred. The benefit of using this mode is that you don't waste CPU cycles
/// looping or updating when you know nothing is changing in your model or view.
Wait,
/// Loops for the given number of updates and then finishes.
///
/// This is similar to the **Wait** loop mode, except that windowing, application and input
/// events will not cause the loop to update or view again after the initial
/// `number_of_updates` have already been applied.
///
/// This is useful for sketches where you only want to draw one frame, or if you know exactly
/// how many updates you require for an animation, etc.
NTimes {
/// The number of updates that must be emited regardless of non-update events
number_of_updates: usize,
},
}
impl<M> Builder<M, Event>
where
M: 'static,
{
/// The default set of backends requested.
pub const DEFAULT_BACKENDS: wgpu::Backends = wgpu::DEFAULT_BACKENDS;
/// Begin building the `App`.
///
/// The `model` argument is the function that the App will call to initialise your Model.
///
/// The Model can be thought of as the state that you would like to track throughout the
/// lifetime of your nannou program from start to exit.
///
/// The given function is called before any event processing begins within the application.
///
/// The Model that is returned by the function is the same model that will be passed to the
/// given event and view functions.
pub fn new(model: ModelFn<M>) -> Self {
Self::new_async(move |app| Box::new(future::ready(model(app))))
}
pub fn new_async(
model: impl FnOnce(&App) -> Box<dyn Future<Output = M> + '_> + 'static,
) -> Self {
Builder {
model: Box::new(model),
config: Config::default(),
event: None,
update: None,
default_view: None,
exit: None,
create_default_window: false,
default_window_size: None,
max_capture_frame_jobs: None,
capture_frame_timeout: None,
backends: Self::DEFAULT_BACKENDS,
}
}
/// The function that the app will call to allow you to update your Model on events.
///
/// The `event` function allows you to expect any event type that implements `LoopEvent`,
/// however nannou also provides a default `Event` type that should cover most use cases. This
/// event type is an `enum` that describes all the different kinds of I/O events that might
/// occur during the life of the program. These include things like `Update`s and
/// `WindowEvent`s such as `KeyPressed`, `MouseMoved`, and so on.
#[cfg_attr(rustfmt, rustfmt_skip)]
pub fn event<E>(self, event: EventFn<M, E>) -> Builder<M, E>
where
E: LoopEvent,
{
let Builder {
model,
config,
update,
default_view,
exit,
create_default_window,
default_window_size,
max_capture_frame_jobs,
capture_frame_timeout,
backends,
..
} = self;
Builder {
model,
config,
event: Some(event),
update,
default_view,
exit,
create_default_window,
default_window_size,
max_capture_frame_jobs,
capture_frame_timeout,
backends
}
}
}
impl<M, E> Builder<M, E>
where
M: 'static,
E: LoopEvent,
{
/// By default, we timeout if waiting for a frame capture job takes longer than 5 seconds. This
/// is to avoid hanging forever in the case the frame writing process encounters an
/// unrecoverable error.
pub const DEFAULT_CAPTURE_FRAME_TIMEOUT: Duration = Duration::from_secs(10);
/// The default `view` function that the app will call to allow you to present your Model to
/// the surface of a window on your display.
///
/// This function will be used in the case that a window-specific view function has not been
/// provided, e.g. via `window::Builder::view` or `window::Builder::sketch`.
///
/// Note that when working with more than one window, you can use `frame.window_id()` to
/// determine which window the current call is associated with.
pub fn view(mut self, view: ViewFn<M>) -> Self {
self.default_view = Some(View::WithModel(view));
self
}
/// A function for updating the model within the application loop.
///
/// See the `LoopMode` documentation for more information about the different kinds of
/// application loop modes available in nannou and how they behave.
///
/// Update events are also emitted as a variant of the `event` function. Note that if you
/// specify both an `event` function and an `update` function, the `event` function will always
/// be called with an update event prior to this `update` function.
pub fn update(mut self, update: UpdateFn<M>) -> Self {
self.update = Some(update);
self
}
/// Tell the app that you would like it to create a single, simple, default window just before
/// it calls your model function.
///
/// The given `view` function will play the same role as if passed to the `view` builder
/// method. Note that the `view` function passed to this method will overwrite any pre-existing
/// view function specified by any preceding call to the `view`
///
/// Note that calling this multiple times will not give you multiple windows, but instead will
/// simply overwrite pre-existing calls to the method. If you would like to create multiple
/// windows or would like more flexibility in your window creation process, please see the
/// `App::new_window` method. The role of this `simple_window` method is to provide a
/// quick-and-easy way to start with a simple window. This can be very useful for quick ideas,
/// small single-window applications and examples.
pub fn simple_window(mut self, view: ViewFn<M>) -> Self {
self.default_view = Some(View::WithModel(view));
self.create_default_window = true;
self
}
/// Specify an `exit` function to be called when the application exits.
///
/// The exit function gives ownership of the model back to you for any cleanup that might be
/// necessary.
pub fn exit(mut self, exit: ExitFn<M>) -> Self {
self.exit = Some(exit);
self
}
/// Specify the default window size in points.
///
/// If a window is created and its size is not specified, this size will be used.
pub fn size(mut self, width: u32, height: u32) -> Self {
let size = winit::dpi::LogicalSize { width, height };
self.default_window_size = Some(DefaultWindowSize::Logical(size));
self
}
/// Specify that windows should be created on the primary monitor by default.
pub fn fullscreen(mut self) -> Self {
self.default_window_size = Some(DefaultWindowSize::Fullscreen);
self
}
/// Specify the default initial loop mode for this app.
pub fn loop_mode(mut self, mode: LoopMode) -> Self {
self.config.loop_mode = mode;
self
}
/// The maximum number of simultaneous capture frame jobs that can be run per window before we
/// block and wait for the existing jobs to complete.
///
/// A "capture frame job" refers to the combind process of waiting to read a frame from the GPU
/// and then writing that frame to an image file on the disk. Each call to
/// `window.capture_frame(path)` spawns a new "capture frame job" on an internal thread pool.
///
/// By default, this value is equal to the number of physical cpu threads available on the
/// system. However, keep in mind that this means there must be room in both RAM and VRAM for
/// this number of textures to exist per window at any moment in time. If you run into an "out
/// of memory" error, try reducing the number of max jobs to a lower value, though never lower
/// than `1`.
///
/// **Panics** if the specified value is less than `1`.
pub fn max_capture_frame_jobs(mut self, max_jobs: u32) -> Self {
assert!(
max_jobs >= 1,
"must allow for at least one capture frame job at a time"
);
self.max_capture_frame_jobs = Some(max_jobs);
self
}
/// In the case that `max_capture_frame_jobs` is reached and the main thread must block, this
/// specifies how long to wait for a running capture job to complete. See the
/// `max_capture_frame_jobs` docs for more details.
///
/// By default, the timeout used is equal to `app::Builder::DEFAULT_CAPTURE_FRAME_TIMEOUT`.
///
/// If `None` is specified, the capture process will never time out. This may be necessary on
/// extremely low-powered machines that take a long time to write each frame to disk.
pub fn capture_frame_timeout(mut self, timeout: Option<std::time::Duration>) -> Self {
self.capture_frame_timeout = Some(timeout);
self
}
/// Specify the set of preferred WGPU backends.
///
/// By default, this is `wgpu::Backends::PRIMARY | wgpu::Backends::GL`.
pub fn backends(mut self, backends: wgpu::Backends) -> Self {
self.backends = backends;
self
}
/// Build and run an `App` with the specified parameters.
///
/// This function will not return until the application has exited.
///
/// If you wish to remain cross-platform friendly, we recommend that you call this on the main
/// thread as some platforms require that their application event loop and windows are
/// initialised on the main thread.
pub fn run(self) {
let rt = Self::build_runtime();
rt.block_on(self.run_async())
}
#[cfg(not(target_arch = "wasm32"))]
fn build_runtime() -> tokio::runtime::Runtime {
tokio::runtime::Builder::new_multi_thread()
.enable_all()
.build()
.expect("failed to create tokio runtime")
}
#[cfg(target_arch = "wasm32")]
fn build_runtime() -> tokio::runtime::Runtime {
tokio::runtime::Builder::new_current_thread()
.enable_all()
.build()
.expect("failed to create tokio runtime")
}
pub async fn run_async(self) {
// Start the winit window event loop.
let event_loop = winit::event_loop::EventLoop::new();
// Create the proxy used to awaken the event loop.
let event_loop_proxy = event_loop.create_proxy();
let wakeup_queued = Arc::new(AtomicBool::new(false));
let event_loop_proxy = Proxy {
event_loop_proxy,
wakeup_queued,
};
// Initialise the app.
let max_capture_frame_jobs = self
.max_capture_frame_jobs
.unwrap_or(num_cpus::get() as u32);
let capture_frame_timeout = self
.capture_frame_timeout
.unwrap_or(Some(Self::DEFAULT_CAPTURE_FRAME_TIMEOUT));
let event_loop_window_target = Some(EventLoopWindowTarget::Owned(event_loop));
let app = App::new(
self.config,
event_loop_proxy,
event_loop_window_target,
self.default_window_size,
max_capture_frame_jobs,
capture_frame_timeout,
self.backends,
);
// Create the default window if necessary
if self.create_default_window {
let window_id = app
.new_window()
.build_async()
.await
.expect("could not build default app window");
*app.focused_window.borrow_mut() = Some(window_id);
}
// Call the user's model function.
let model = Pin::from((self.model)(&app)).await;
// If there is not yet some default window in "focus" check to see if one has been created.
if app.focused_window.borrow().is_none() {
if let Some(id) = app.windows.borrow().keys().next() {
*app.focused_window.borrow_mut() = Some(id.clone());
}
}
run_loop(
app,
model,
self.event,
self.update,
self.default_view,
self.exit,
);
}
}
impl<E> SketchBuilder<E>
where
E: LoopEvent,
{
/// Specify the default initial loop mode for this sketch.
///
/// This method delegates to `Builder::loop_mode`.
pub fn loop_mode(mut self, mode: LoopMode) -> Self {
self.builder = self.builder.loop_mode(mode);
self
}
/// The size of the sketch window.
pub fn size(mut self, width: u32, height: u32) -> Self {
self.builder = self.builder.size(width, height);
self
}
/// Build and run a `Sketch` with the specified parameters.
///
/// This calls `App::run` internally. See that method for details!
pub fn run(self) {
self.builder.run()
}
}
impl Builder<(), Event> {
/// Shorthand for building a simple app that has no model, handles no events and simply draws
/// to a single window.
///
/// This is useful for late night hack sessions where you just don't care about all that other
/// stuff, you just want to play around with some ideas or make something pretty.
pub fn sketch(view: SketchViewFn) -> SketchBuilder<Event> {
let mut builder = Builder::new(default_model);
builder.default_view = Some(View::Sketch(view));
builder.create_default_window = true;
SketchBuilder { builder }
}
}
/// Given some "frames per second", return the interval between frames as a `Duration`.
fn update_interval(fps: f64) -> Duration {
assert!(fps > 0.0);
const NANOSEC_PER_SEC: f64 = 1_000_000_000.0;
let interval_nanosecs = NANOSEC_PER_SEC / fps;
let secs = (interval_nanosecs / NANOSEC_PER_SEC) as u64;
let nanosecs = (interval_nanosecs % NANOSEC_PER_SEC) as u32;
Duration::new(secs, nanosecs)
}
impl LoopMode {
pub const DEFAULT_RATE_FPS: f64 = 60.0;
/// The minimum number of updates that will be emitted after an event is triggered in Wait
/// mode.
pub const UPDATES_PER_WAIT_EVENT: u32 = 3;
/// A simplified constructor for the default `RefreshSync` loop mode.
///
/// Assumes a display refresh rate of ~60hz and in turn specifies a `minimum_update_latency` of
/// ~8.33ms. The `windows` field is set to `None`.
pub fn refresh_sync() -> Self {
LoopMode::RefreshSync
}
/// Specify the **Rate** mode with the given frames-per-second.
pub fn rate_fps(fps: f64) -> Self {
let update_interval = update_interval(fps);
LoopMode::Rate { update_interval }
}
/// Specify the **Wait** mode.
pub fn wait() -> Self {
LoopMode::Wait
}
/// Specify the **Ntimes** mode with one update
///
/// Waits long enough to ensure loop iteration never occurs faster than the given `max_fps`.
pub fn loop_ntimes(number_of_updates: usize) -> Self {
LoopMode::NTimes { number_of_updates }
}
/// Specify the **Ntimes** mode with one update
pub fn loop_once() -> Self {
Self::loop_ntimes(1)
}
}
impl Default for LoopMode {
fn default() -> Self {
LoopMode::refresh_sync()
}
}
impl Default for Config {
fn default() -> Self {
let loop_mode = Default::default();
let exit_on_escape = App::DEFAULT_EXIT_ON_ESCAPE;
let fullscreen_on_shortcut = App::DEFAULT_FULLSCREEN_ON_SHORTCUT;
Config {
loop_mode,
exit_on_escape,
fullscreen_on_shortcut,
}
}
}
impl App {
pub const ASSETS_DIRECTORY_NAME: &'static str = "assets";
pub const DEFAULT_EXIT_ON_ESCAPE: bool = true;
pub const DEFAULT_FULLSCREEN_ON_SHORTCUT: bool = true;
// Create a new `App`.
fn new(
config: Config,
event_loop_proxy: Proxy,
event_loop_window_target: Option<EventLoopWindowTarget>,
default_window_size: Option<DefaultWindowSize>,
max_capture_frame_jobs: u32,
capture_frame_timeout: Option<Duration>,
backends: wgpu::Backends,
) -> Self {
let instance = wgpu::Instance::new(InstanceDescriptor {
backends,
..Default::default()
});
let adapters = Default::default();
let windows = RefCell::new(HashMap::new());
let draw = RefCell::new(draw::Draw::default());
let config = RefCell::new(config);
let renderers = RefCell::new(Default::default());
let draw_state = DrawState { draw, renderers };
let focused_window = RefCell::new(None);
let mouse = state::Mouse::new();
let keys = state::Keys::default();
let duration = state::Time::default();
let time = duration.since_start.secs() as _;
let app = App {
event_loop_proxy,
event_loop_window_target,
default_window_size,
max_capture_frame_jobs,
capture_frame_timeout,
focused_window,
backends,
instance,
adapters,
windows,
config,
draw_state,
mouse,
keys,
duration,
time,
};
app
}
/// Returns the list of all the monitors available on the system.
pub fn available_monitors(&self) -> Vec<winit::monitor::MonitorHandle> {
match self.event_loop_window_target {
Some(EventLoopWindowTarget::Owned(ref event_loop)) => {
event_loop.available_monitors().collect()
}
_ => {
let windows = self.windows.borrow();
match windows.values().next() {
None => vec![],
Some(window) => window.window.available_monitors().collect(),
}
}
}
}
/// Returns the primary monitor of the system.
/// May return None if none can be detected. For example, this can happen when running on Linux
/// with Wayland.
pub fn primary_monitor(&self) -> Option<winit::monitor::MonitorHandle> {
match self.event_loop_window_target {
Some(EventLoopWindowTarget::Owned(ref event_loop)) => event_loop.primary_monitor(),
_ => {
let windows = self.windows.borrow();
match windows.values().next() {
None => unimplemented!(
"yet to implement a way to get `primary_monitor` if neither \
event loop or window can be safely accessed"
),
Some(window) => window.window.primary_monitor(),
}
}
}
}
/// Find and return the absolute path to the project's `assets` directory.
///
/// This method looks for the assets directory in the following order:
///
/// 1. Checks the same directory as the executable.
/// 2. Recursively checks exe's parent directories (to a max depth of 5).
/// 3. Recursively checks exe's children directories (to a max depth of 3).
pub fn assets_path(&self) -> Result<PathBuf, find_folder::Error> {
find_assets_path()
}
/// The path to the current project directory.
///
/// The current project directory is considered to be the directory containing the cargo
/// manifest (aka the `Cargo.toml` file).
///
/// **Note:** Be careful not to rely on this directory for apps or sketches that you wish to
/// distribute! This directory is mostly useful for local sketches, experiments and testing.
pub fn project_path(&self) -> Result<PathBuf, find_folder::Error> {
find_project_path()
}
/// Begin building a new window.
pub fn new_window(&self) -> window::Builder {
let builder = window::Builder::new(self);
let builder = match self.default_window_size {
Some(DefaultWindowSize::Fullscreen) => builder.fullscreen(),
Some(DefaultWindowSize::Logical(size)) => builder.size(size.width, size.height),
None => builder,
};
builder
.max_capture_frame_jobs(self.max_capture_frame_jobs)
.capture_frame_timeout(self.capture_frame_timeout)
}
/// The number of windows currently in the application.
pub fn window_count(&self) -> usize {
self.windows.borrow().len()
}
/// A reference to the window with the given `Id`.
pub fn window(&self, id: window::Id) -> Option<std::cell::Ref<Window>> {
let windows = self.windows.borrow();
if !windows.contains_key(&id) {
None
} else {
Some(std::cell::Ref::map(windows, |ws| &ws[&id]))
}
}
/// Return the **Id** of the currently focused window.
///
/// **Panics** if there are no windows or if no window is in focus.
pub fn window_id(&self) -> window::Id {
self.focused_window
.borrow()
.expect("called `App::window_id` but there is no window currently in focus")
}
/// Return a `Vec` containing a unique `window::Id` for each currently open window managed by
/// the `App`.
pub fn window_ids(&self) -> Vec<window::Id> {
let windows = self.windows.borrow();
windows.keys().cloned().collect()
}
/// Return the **Rect** for the currently focused window.
///
/// The **Rect** coords are described in "points" (pixels divided by the hidpi factor).
///
/// **Panics** if there are no windows or if no window is in focus.
pub fn window_rect(&self) -> geom::Rect<f32> {
self.main_window().rect()
}
/// A reference to the window currently in focus.
///
/// **Panics** if their are no windows open in the **App**.
///
/// Uses the **App::window** method internally.
///
/// TODO: Currently this produces a reference to the *focused* window, but this behaviour
/// should be changed to track the "main" window (the first window created?).
pub fn main_window(&self) -> std::cell::Ref<Window> {
self.window(self.window_id())
.expect("no window for focused id")
}
/// Return the wgpu `Backends` in use.
pub fn backends(&self) -> wgpu::Backends {
self.backends
}
/// Return the main wgpu `Instance` in use.
///
/// This must be passed into the various methods on `AdapterMap`.
pub fn instance(&self) -> &wgpu::Instance {
&self.instance
}
/// Access to the **App**'s inner map of wgpu adapters representing access to physical GPU
/// devices.
///
/// By maintaining a map of active adapters and their established devices, nannou allows for
/// devices to be shared based on the desired `RequestAdapterOptions` and `DeviceDescriptor`s.
///
/// For example, when creating new windows with the same set of `RequestAdapterOptions` and
/// `DeviceDescriptor`s, nannou will automatically share devices between windows where
/// possible. This allows for sharing GPU resources like **Texture**s and **Buffer**s between
/// windows.
///
/// All methods on `AdapterMap` that take a `wgpu::Instance` must be passed the main instance
/// in use by the app, accessed via `App::instance()`.
pub fn wgpu_adapters(&self) -> &wgpu::AdapterMap {
&self.adapters
}
/// Return whether or not the `App` is currently set to exit when the `Escape` key is pressed.
pub fn exit_on_escape(&self) -> bool {
self.config.borrow().exit_on_escape
}
/// Specify whether or not the app should close when the `Escape` key is pressed.
///
/// By default this is `true`.
pub fn set_exit_on_escape(&self, b: bool) {
self.config.borrow_mut().exit_on_escape = b;
}
/// Returns whether or not the `App` is currently allows the focused window to enter or exit
/// fullscreen via typical platform-specific shortcuts.
///
/// - Linux uses F11.
/// - macOS uses apple key + f.
/// - Windows uses windows key + f.
pub fn fullscreen_on_shortcut(&self) -> bool {
self.config.borrow().fullscreen_on_shortcut
}
/// Set whether or not the `App` should allow the focused window to enter or exit fullscreen
/// via typical platform-specific shortcuts.
///
/// - Linux uses F11.
/// - macOS uses apple key + f.
/// - Windows uses windows key + f.
pub fn set_fullscreen_on_shortcut(&self, b: bool) {
self.config.borrow_mut().fullscreen_on_shortcut = b;
}
/// Returns the **App**'s current **LoopMode**.
///
/// The default loop mode is `LoopMode::RefreshSync`.
pub fn loop_mode(&self) -> LoopMode {
self.config.borrow().loop_mode.clone()
}
/// Sets the loop mode of the **App**.
///
/// Note: Setting the loop mode will not affect anything until the end of the current loop
/// iteration. The behaviour of a single loop iteration is described under each of the
/// **LoopMode** variants.
pub fn set_loop_mode(&self, mode: LoopMode) {
self.config.borrow_mut().loop_mode = mode;
}
/// A handle to the **App** that can be shared across threads.
///
/// This can be used to "wake up" the **App**'s inner event loop.
pub fn create_proxy(&self) -> Proxy {
self.event_loop_proxy.clone()
}
/// Produce the **App**'s **Draw** API for drawing geometry and text with colors and textures.
///
/// **Note:** You can also create your own **Draw** instances via `Draw::new()`! This method
/// makes it a tiny bit easier as the **App** stores the **Draw** instance for you and
/// automatically resets the state on each call to `app.draw()`.
pub fn draw(&self) -> draw::Draw {
let draw = self.draw_state.draw.borrow_mut();
draw.reset();
draw.clone()
}
/// The number of times the focused window's **view** function has been called since the start
/// of the program.
pub fn elapsed_frames(&self) -> u64 {
self.main_window().frame_count
}
/// The number of frames that can currently be displayed a second
pub fn fps(&self) -> f32 {
self.duration.updates_per_second()
}
/// The name of the nannou executable that is currently running.
pub fn exe_name(&self) -> std::io::Result<String> {
let string = std::env::current_exe()?
.file_stem()
.expect("exe path contained no file stem")
.to_string_lossy()
.to_string();
Ok(string)
}
/// Quits the currently running application.
pub fn quit(&self) {
self.windows.borrow_mut().clear();
}
}
impl Proxy {
/// Wake up the application!
///
/// This wakes up the **App**'s inner event loop and causes a user event to be emitted by the
/// event loop.
///
/// The `app::Proxy` stores a flag in order to track whether or not the `EventLoop` is
/// currently blocking and waiting for events. This method will only call the underlying
/// `winit::event_loop::EventLoopProxy::send_event` method if this flag is set to true and will
/// immediately set the flag to false afterwards. This makes it safe to call the `wakeup`
/// method as frequently as necessary across methods without causing any underlying OS methods
/// to be called more than necessary.
pub fn wakeup(&self) -> Result<(), winit::event_loop::EventLoopClosed<()>> {
if !self.wakeup_queued.load(atomic::Ordering::SeqCst) {
self.event_loop_proxy.send_event(())?;
self.wakeup_queued.store(true, atomic::Ordering::SeqCst);
}
Ok(())
}
}
impl draw::Draw {
/// Render the **Draw**'s inner list of commands to the texture associated with the **Frame**.
///
/// The **App** stores a unique render.
pub fn to_frame(&self, app: &App, frame: &Frame) -> Result<(), draw::renderer::DrawError> {
let window_id = frame.window_id();
let window = app
.window(window_id)
.expect("no window to draw to for `Draw`'s window_id");
// Retrieve a renderer for this window.
let renderers = app.draw_state.renderers.borrow_mut();
let renderer = RefMut::map(renderers, |renderers| {
renderers.entry(window_id).or_insert_with(|| {
let device = window.device();
let frame_dims: [u32; 2] = window.tracked_state.physical_size.into();
let scale_factor = window.tracked_state.scale_factor as f32;
let msaa_samples = window.msaa_samples();
let target_format = crate::frame::Frame::TEXTURE_FORMAT;
let renderer = draw::RendererBuilder::new().build(
device,
frame_dims,
scale_factor,
msaa_samples,
target_format,
);
RefCell::new(renderer)
})
});
let scale_factor = window.tracked_state.scale_factor as _;
let mut renderer = renderer.borrow_mut();
renderer.render_to_frame(window.device(), self, scale_factor, frame);
Ok(())
}
}
impl<'a> wgpu::WithDeviceQueuePair for &'a crate::app::App {
fn with_device_queue_pair<F, O>(self, f: F) -> O
where
F: FnOnce(&wgpu::Device, &wgpu::Queue) -> O,
{
self.main_window().with_device_queue_pair(f)
}
}
/// Attempt to find the assets directory path relative to the executable location.
pub fn find_assets_path() -> Result<PathBuf, find_folder::Error> {
let exe_path = std::env::current_exe()?;
find_folder::Search::ParentsThenKids(5, 3)
.of(exe_path
.parent()
.expect("executable has no parent directory to search")
.into())
.for_folder(App::ASSETS_DIRECTORY_NAME)
}
/// Attempt to find the assets directory path relative to the executable location.
pub fn find_project_path() -> Result<PathBuf, find_folder::Error> {
let exe_path = std::env::current_exe()?;
let mut path = exe_path.parent().expect("exe has no parent directory");
while let Some(parent) = path.parent() {
path = parent;
if path.join("Cargo").with_extension("toml").exists() {
return Ok(path.to_path_buf());
}
}
Err(find_folder::Error::NotFound)
}
// This type allows the `App` to provide an API for creating new windows.
//
// During the `setup` before the
pub(crate) enum EventLoopWindowTarget {
// Ownership over the event loop.
//
// This is the state before the `EventLoop::run` begins.
Owned(winit::event_loop::EventLoop<()>),
// A pointer to the target for building windows.
//
// This is the state during `EventLoop::run`. This pointer becomes invalid following
// `EventLoop::run`, so it is essential to take care that we are in the correct state when
// using this pointer.
Pointer(*const winit::event_loop::EventLoopWindowTarget<()>),
}
impl EventLoopWindowTarget {
// Take a reference to the inner event loop window target.
//
// This method is solely used during `window::Builder::build` to allow for
pub(crate) fn as_ref(&self) -> &winit::event_loop::EventLoopWindowTarget<()> {
match *self {
EventLoopWindowTarget::Owned(ref event_loop) => &**event_loop,
EventLoopWindowTarget::Pointer(ptr) => {
// This cast is safe, assuming that the `App`'s `EventLoopWindowTarget` will only
// ever be in the `Pointer` state while the pointer is valid - that is, during the
// call to `EventLoop::run`. Great care is taken to ensure that the
// `EventLoopWindowTarget` is dropped immediately after `EventLoop::run` completes.
// This allows us to take care of abiding by the `EventLoopWindowTarget` lifetime
// manually while avoiding having the lifetime propagate up through the `App` type.
unsafe { &*ptr as &winit::event_loop::EventLoopWindowTarget<()> }
}
}
}
}
// Application Loop.
//
// Beyond this point lies the master function for running the main application loop!
//
// This is undoubtedly the hairiest part of nannou's code base. This is largely due to the fact
// that it is the part of nannou where we marry application and user input events, loop timing,
// updating the model, platform-specific quirks and warts, the various possible `LoopMode`s and
// wgpu interop.
//
// If you would like to contribute but are unsure about any of the following, feel free to open an
// issue and ask!
fn run_loop<M, E>(
mut app: App,
model: M,
event_fn: Option<EventFn<M, E>>,
update_fn: Option<UpdateFn<M>>,
default_view: Option<View<M>>,
exit_fn: Option<ExitFn<M>>,
) where
M: 'static,
E: LoopEvent,
{
// Track the moment the loop starts.
let loop_start = Instant::now();
// Wrap the `model` in an `Option`, allowing us to take full ownership within the `event_loop`
// on `exit`.
let mut model = Some(model);
// Take ownership of the `EventLoop` from the `App`.
let event_loop = match app.event_loop_window_target.take() {
Some(EventLoopWindowTarget::Owned(event_loop)) => event_loop,
_ => unreachable!("the app should always own the event loop at this point"),
};
// Keep track of state related to the loop mode itself.
let mut loop_state = LoopState {
updates_since_event: 0,
loop_start,
last_update: loop_start,
total_updates: 0,
};
// Run the event loop.
event_loop.run(move |mut event, event_loop_window_target, control_flow| {
// Set the event loop window target pointer to allow for building windows.
app.event_loop_window_target = Some(EventLoopWindowTarget::Pointer(
event_loop_window_target as *const _,
));
let mut exit = false;
match event {
// Check to see if we need to emit an update and request a redraw.
winit::event::Event::MainEventsCleared => {
if let Some(model) = model.as_mut() {
let loop_mode = app.loop_mode();
let now = Instant::now();
let mut do_update = |loop_state: &mut LoopState| {
apply_update(&mut app, model, event_fn, update_fn, loop_state, now);
};
match loop_mode {
LoopMode::NTimes { number_of_updates }
if loop_state.total_updates >= number_of_updates as u64 => {}
// Sometimes winit interrupts ControlFlow::Wait for no good reason, so we
// make sure that there were some events in order to do an update when
// LoopMode::Wait is used.
LoopMode::Wait if loop_state.updates_since_event > 0 => {}
// TODO: Consider allowing for a custom number of updates like so:
// LoopMode::Wait { updates_before_waiting } =>
// if loop_state.updates_since_event > updates_before_waiting as u64 => {}
_ => {
do_update(&mut loop_state);
},
}
}
}
// Request a frame from the user for the specified window.
//
// TODO: Only request a frame from the user if this redraw was requested following an
// update. Otherwise, just use the existing intermediary frame.
winit::event::Event::RedrawRequested(window_id) => {
if let Some(model) = model.as_mut() {
// Retrieve the surface frame and the number of this frame.
// NOTE: We avoid mutably borrowing `windows` map any longer than necessary to
// avoid restricting users from accessing `windows` during `view`.
let (mut surface_tex_result, nth_frame) = {
let mut windows = app.windows.borrow_mut();
let window = windows
.get_mut(&window_id)
.expect("no window for `RedrawRequest`");
let texture = window.surface.get_current_texture();
let nth_frame = window.frame_count;
(texture, nth_frame)
};
if let Err(e) = &surface_tex_result {
match e {
// Sometimes redraws get delivered before resizes on x11 for unclear reasons.
// It goes all the way down to the API: if you ask x11 about the window size
// at this time, it'll tell you that it hasn't changed. So... we skip
// this frame. The resize will show up in a bit and then we can get on
// with our lives.
// If you turn on debug logging this does occasionally cause some vulkan
// validation errors... that's not great.
// TODO find a better long-term fix than ignoring.
wgpu::SurfaceError::Lost => {
// Attempt to reconfigure the surface.
let mut windows = app.windows.borrow_mut();
let window = windows
.get_mut(&window_id)
.expect("no window for `RedrawRequest`");
window
.reconfigure_surface(window.tracked_state.physical_size.into());
surface_tex_result = window.surface.get_current_texture();
}
wgpu::SurfaceError::Outdated => {} // skip frame
wgpu::SurfaceError::Timeout => {} // skip frame
wgpu::SurfaceError::OutOfMemory => {
panic!("out of memory acquiring the surface frame: {}", e);
}
}
}
if let Ok(surface_tex) = surface_tex_result {
let surface_texture = &surface_tex
.texture
.create_view(&wgpu::TextureViewDescriptor::default());
// Borrow the window now that we don't need it mutably until setting the render
// data back.
let windows = app.windows.borrow();
let window = windows
.get(&window_id)
.expect("failed to find window for redraw request");
let frame_data = &window.frame_data;
// Construct and emit a frame via `view` for receiving the user's graphics commands.
let sf = window.tracked_state.scale_factor;
let (w, h) = window
.tracked_state
.physical_size
.to_logical::<f32>(sf)
.into();
let window_rect = geom::Rect::from_w_h(w, h);
let raw_frame = RawFrame::new_empty(
window.device_queue_pair().clone(),
window_id,
nth_frame,
surface_texture,
window.surface_conf.format,
window_rect,
);
// Clear the raw frame immediately once the window is invalidated
if window.is_invalidated {
if let Some(data) = frame_data {
raw_frame.clear(&data.render.texture_view(), window.clear_color);
}
}
// If the user specified a view function specifically for this window, use it.
// Otherwise, use the fallback, default view passed to the app if there was one.
let window_view = window.user_functions.view.clone();
match window_view {
Some(window::View::Sketch(view)) => {
let data = frame_data.as_ref().expect("missing `frame_data`");
let frame =
Frame::new_empty(raw_frame, &data.render, &data.capture);
view(&app, frame);
}
Some(window::View::WithModel(view)) => {
let data = frame_data.as_ref().expect("missing `frame_data`");
let frame =
Frame::new_empty(raw_frame, &data.render, &data.capture);
let view = view.to_fn_ptr::<M>().expect(
"unexpected model argument given to window view function",
);
(*view)(&app, model, frame);
}
Some(window::View::WithModelRaw(raw_view)) => {
let raw_view = raw_view.to_fn_ptr::<M>().expect(
"unexpected model argument given to window raw_view function",
);
(*raw_view)(&app, &model, raw_frame);
}
None => match default_view {
Some(View::Sketch(view)) => {
let data = frame_data.as_ref().expect("missing `frame_data`");
let frame =
Frame::new_empty(raw_frame, &data.render, &data.capture);
view(&app, frame);
}
Some(View::WithModel(view)) => {
let data = frame_data.as_ref().expect("missing `frame_data`");
let frame =
Frame::new_empty(raw_frame, &data.render, &data.capture);
view(&app, &model, frame);
}
None => raw_frame.submit(),
},
}
// Queue has been submitted by now, time to present.
surface_tex.present();
// Release immutable lock
drop(windows);
// Increment the window's frame count.
let mut windows = app.windows.borrow_mut();
let window = windows
.get_mut(&window_id)
.expect("no window for redraw request ID");
// Assume invalidated window was cleared above before `view()`
window.is_invalidated = false;
window.frame_count += 1;
}
}
}
// Clear any inactive adapters and devices and poll those remaining.
winit::event::Event::RedrawEventsCleared => {
app.wgpu_adapters().clear_inactive_adapters_and_devices();
// TODO: This seems to cause some glitching and slows down macOS drastically.
// While not necessary, this would be nice to have to automatically process async
// read/write callbacks submitted by users who aren't aware that they need to poll
// their devices in order to make them do work. Perhaps as a workaround we could
// only poll devices that aren't already associated with a window?
//app.wgpu_adapters().poll_all_devices(false);
}
// For all window, device and user (app proxy) events reset the `updates_since_event`
// count which is used to improve behaviour for the `Wait` loop mode.
// TODO: Document this set of events under `LoopMode::Wait`.
winit::event::Event::WindowEvent { .. }
| winit::event::Event::DeviceEvent { .. }
| winit::event::Event::UserEvent(_)
| winit::event::Event::Suspended
| winit::event::Event::Resumed => {
loop_state.updates_since_event = 0;
// `UserEvent` is emitted on `wakeup`.
if let winit::event::Event::UserEvent(_) = event {
app.event_loop_proxy.wakeup_queued.store(false, atomic::Ordering::SeqCst);
}
}
// Ignore `NewEvents`.
winit::event::Event::NewEvents(_)
// `LoopDestroyed` is handled later in `process_and_emit_winit_event` so ignore it here.
| winit::event::Event::LoopDestroyed => {}
}
// We must reconfigure the wgpu surface if the window was resized.
if let winit::event::Event::WindowEvent {
ref mut event,
window_id,
} = event
{
match event {
winit::event::WindowEvent::Resized(new_inner_size) => {
let mut windows = app.windows.borrow_mut();
if let Some(window) = windows.get_mut(&window_id) {
window.reconfigure_surface(new_inner_size.clone().into());
}
}
winit::event::WindowEvent::ScaleFactorChanged {
scale_factor,
new_inner_size,
} => {
let mut windows = app.windows.borrow_mut();
if let Some(window) = windows.get_mut(&window_id) {
window.tracked_state.scale_factor = *scale_factor;
window.reconfigure_surface(new_inner_size.clone().into());
}
}
_ => (),
}
}
// Process the event with the user's functions and see if we need to exit.
if let Some(model) = model.as_mut() {
exit |= process_and_emit_winit_event::<M, E>(&mut app, model, event_fn, &event);
}
// Set the control flow based on the loop mode.
let loop_mode = app.loop_mode();
*control_flow = match loop_mode {
LoopMode::Wait => ControlFlow::Wait,
LoopMode::NTimes { number_of_updates }
if loop_state.total_updates >= number_of_updates as u64 =>
{
ControlFlow::Wait
}
_ => ControlFlow::Poll,
};
// If we need to exit, call the user's function and update control flow.
if exit {
if let Some(model) = model.take() {
if let Some(exit_fn) = exit_fn {
exit_fn(&app, model);
}
}
*control_flow = ControlFlow::Exit;
return;
}
});
// Ensure the app no longer points to the window target now that `run` has completed.
// TODO: Right now `event_loop.run` can't return. This is just a reminder in case one day the
// API is changed so that it does return.
#[allow(unreachable_code)]
{
app.event_loop_window_target.take();
}
}
// Apply an update to the model via the user's function and update the app and loop state
// accordingly.
fn apply_update<M, E>(
app: &mut App,
model: &mut M,
event_fn: Option<EventFn<M, E>>,
update_fn: Option<UpdateFn<M>>,
loop_state: &mut LoopState,
now: Instant,
) where
M: 'static,
E: LoopEvent,
{
// Update the app's durations.
let since_last = now.duration_since(loop_state.last_update);
let since_start = now.duration_since(loop_state.loop_start);
app.duration.since_prev_update = since_last;
app.duration.since_start = since_start;
app.time = since_start.secs() as _;
let update = crate::event::Update {
since_start,
since_last,
};
// User event function.
if let Some(event_fn) = event_fn {
let event = E::from(update.clone());
event_fn(app, model, event);
}
// User update function.
if let Some(update_fn) = update_fn {
update_fn(app, model, update);
}
loop_state.last_update = now;
loop_state.total_updates += 1;
loop_state.updates_since_event += 1;
// Request redraw from windows.
let windows = app.windows.borrow();
for window in windows.values() {
window.window.request_redraw();
}
}
// Whether or not the given event should toggle fullscreen.
fn should_toggle_fullscreen(
winit_event: &winit::event::WindowEvent,
mods: &winit::event::ModifiersState,
) -> bool {
let input = match *winit_event {
winit::event::WindowEvent::KeyboardInput { ref input, .. } => match input.state {
event::ElementState::Pressed => input,
_ => return false,
},
_ => return false,
};
let key = match input.virtual_keycode {
None => return false,
Some(k) => k,
};
// On linux, check for the F11 key (with no modifiers down).
//
// TODO: Somehow add special case for KDE?
if cfg!(target_os = "linux") {
if *mods == winit::event::ModifiersState::empty() {
if let Key::F11 = key {
return true;
}
}
// On macos and windows check for the logo key plus `f` with no other modifiers.
} else if cfg!(target_os = "macos") || cfg!(target_os = "windows") {
if mods.logo() {
if let Key::F = key {
return true;
}
}
}
false
}
// Event handling boilerplate shared between the loop modes.
//
// 1. Checks for exit on escape.
// 2. Removes closed windows from app.
// 3. Emits event via `event_fn`.
// 4. Returns whether or not we should break from the loop.
fn process_and_emit_winit_event<'a, M, E>(
app: &mut App,
model: &mut M,
event_fn: Option<EventFn<M, E>>,
winit_event: &winit::event::Event<'a, ()>,
) -> bool
where
M: 'static,
E: LoopEvent,
{
// Inspect the event to see if it would require closing the App.
let mut exit_on_escape = false;
let mut removed_window = None;
if let winit::event::Event::WindowEvent {
window_id,
ref event,
} = *winit_event
{
// If we should exit the app on escape, check for the escape key.
if app.exit_on_escape() {
if let winit::event::WindowEvent::KeyboardInput { input, .. } = *event {
if let Some(Key::Escape) = input.virtual_keycode {
exit_on_escape = true;
}
}
}
// When a window has been closed, this function is called to remove any state associated
// with that window so that the state doesn't leak.
//
// Returns the `Window` that was removed.
fn remove_related_window_state(app: &App, window_id: &window::Id) -> Option<Window> {
app.draw_state.renderers.borrow_mut().remove(window_id);
app.windows.borrow_mut().remove(window_id)
}
if let winit::event::WindowEvent::Destroyed = *event {
removed_window = remove_related_window_state(app, &window_id);
// TODO: We should allow the user to handle this case. E.g. allow for doing things like
// "would you like to save". We currently do this with the app exit function, but maybe a
// window `close` function would be useful?
} else if let winit::event::WindowEvent::CloseRequested = *event {
removed_window = remove_related_window_state(app, &window_id);
} else {
// Get the size of the window for translating coords and dimensions.
let (win_w, win_h, scale_factor) = match app.window(window_id) {
Some(win) => {
// If we should toggle fullscreen for this window, do so.
if app.fullscreen_on_shortcut() {
if should_toggle_fullscreen(event, &app.keys.mods) {
if win.is_fullscreen() {
win.set_fullscreen(false);
} else {
win.set_fullscreen(true);
}
}
}
let sf = win.tracked_state.scale_factor;
let (w, h) = win.tracked_state.physical_size.to_logical::<f32>(sf).into();
(w, h, sf)
}
None => (0.0, 0.0, 1.0),
};
// Translate the coordinates from top-left-origin-with-y-down to centre-origin-with-y-up.
let tx = |x: geom::scalar::Default| x - win_w as geom::scalar::Default / 2.0;
let ty = |y: geom::scalar::Default| -(y - win_h as geom::scalar::Default / 2.0);
// If the window ID has changed, ensure the dimensions are up to date.
if *app.focused_window.borrow() != Some(window_id) {
if app.window(window_id).is_some() {
*app.focused_window.borrow_mut() = Some(window_id);
}
}
// Check for events that would update either mouse, keyboard or window state.
match *event {
winit::event::WindowEvent::CursorMoved { position, .. } => {
let (x, y) = position.to_logical::<f32>(scale_factor).into();
let x = tx(x);
let y = ty(y);
app.mouse.x = x;
app.mouse.y = y;
app.mouse.window = Some(window_id);
}
winit::event::WindowEvent::MouseInput { state, button, .. } => {
match state {
event::ElementState::Pressed => {
let p = app.mouse.position();
app.mouse.buttons.press(button, p);
}
event::ElementState::Released => {
app.mouse.buttons.release(button);
}
}
app.mouse.window = Some(window_id);
}
winit::event::WindowEvent::KeyboardInput { input, .. } => {
if let Some(key) = input.virtual_keycode {
match input.state {
event::ElementState::Pressed => {
app.keys.down.keys.insert(key);
}
event::ElementState::Released => {
app.keys.down.keys.remove(&key);
}
}
}
}
_ => (),
}
}
}
// Update the modifier keys within the app if necessary.
if let winit::event::Event::WindowEvent { event, .. } = winit_event {
if let winit::event::WindowEvent::ModifiersChanged(new_mods) = event {
app.keys.mods = new_mods.clone();
}
}
// If the user provided an event function and winit::event::Event could be interpreted as some event
// `E`, use it to update the model.
if let Some(event_fn) = event_fn {
if let Some(event) = E::from_winit_event(winit_event, app) {
event_fn(&app, model, event);
}
}
// If the event was a window event, and the user specified an event function for this window,
// call it.
if let winit::event::Event::WindowEvent {
window_id,
ref event,
} = *winit_event
{
// Raw window events.
if let Some(raw_window_event_fn) = {
let windows = app.windows.borrow();
windows
.get(&window_id)
.and_then(|w| w.user_functions.raw_event.clone())
.or_else(|| {
removed_window
.as_ref()
.and_then(|w| w.user_functions.raw_event.clone())
})
} {
let raw_window_event_fn = raw_window_event_fn
.to_fn_ptr::<M>()
.expect("unexpected model argument given to window event function");
(*raw_window_event_fn)(&app, model, event);
}
let (win_w, win_h, scale_factor) = {
let windows = app.windows.borrow();
windows
.get(&window_id)
.map(|w| {
let sf = w.tracked_state.scale_factor;
let (w, h) = w.tracked_state.physical_size.to_logical::<f64>(sf).into();
(w, h, sf)
})
.unwrap_or((0.0, 0.0, 1.0))
};
// If the event can be represented by a simplified nannou event, check for relevant user
// functions to be called.
if let Some(simple) =
event::WindowEvent::from_winit_window_event(event, win_w, win_h, scale_factor)
{
// Nannou window events.
if let Some(window_event_fn) = {
let windows = app.windows.borrow();
windows
.get(&window_id)
.and_then(|w| w.user_functions.event.clone())
.or_else(|| {
removed_window
.as_ref()
.and_then(|w| w.user_functions.event.clone())
})
} {
let window_event_fn = window_event_fn
.to_fn_ptr::<M>()
.expect("unexpected model argument given to window event function");
(*window_event_fn)(&app, model, simple.clone());
}
// A macro to simplify calling event-specific user functions.
macro_rules! call_user_function {
($fn_name:ident $(,$arg:expr)*) => {{
if let Some(event_fn) = {
let windows = app.windows.borrow();
windows
.get(&window_id)
.and_then(|w| w.user_functions.$fn_name.clone())
.or_else(|| {
removed_window
.as_ref()
.and_then(|w| w.user_functions.$fn_name.clone())
})
} {
let event_fn = event_fn
.to_fn_ptr::<M>()
.unwrap_or_else(|| {
panic!(
"unexpected model argument given to {} function",
stringify!($fn_name),
);
});
(*event_fn)(&app, model, $($arg),*);
}
}};
}
// Check for more specific event functions.
match simple {
event::WindowEvent::KeyPressed(key) => call_user_function!(key_pressed, key),
event::WindowEvent::KeyReleased(key) => call_user_function!(key_released, key),
event::WindowEvent::ReceivedCharacter(char) => {
call_user_function!(received_character, char)
}
event::WindowEvent::MouseMoved(pos) => call_user_function!(mouse_moved, pos),
event::WindowEvent::MousePressed(button) => {
call_user_function!(mouse_pressed, button)
}
event::WindowEvent::MouseReleased(button) => {
call_user_function!(mouse_released, button)
}
event::WindowEvent::MouseEntered => call_user_function!(mouse_entered),
event::WindowEvent::MouseExited => call_user_function!(mouse_exited),
event::WindowEvent::MouseWheel(amount, phase) => {
call_user_function!(mouse_wheel, amount, phase)
}
event::WindowEvent::Moved(pos) => call_user_function!(moved, pos),
event::WindowEvent::Resized(size) => call_user_function!(resized, size),
event::WindowEvent::Touch(touch) => call_user_function!(touch, touch),
event::WindowEvent::TouchPressure(pressure) => {
call_user_function!(touchpad_pressure, pressure)
}
event::WindowEvent::HoveredFile(path) => call_user_function!(hovered_file, path),
event::WindowEvent::HoveredFileCancelled => {
call_user_function!(hovered_file_cancelled)
}
event::WindowEvent::DroppedFile(path) => call_user_function!(dropped_file, path),
event::WindowEvent::Focused => call_user_function!(focused),
event::WindowEvent::Unfocused => call_user_function!(unfocused),
event::WindowEvent::Closed => call_user_function!(closed),
}
}
}
// If the loop was destroyed, we'll need to exit.
let loop_destroyed = match winit_event {
winit::event::Event::LoopDestroyed => true,
_ => false,
};
// If any exist conditions were triggered, indicate so.
let exit = if loop_destroyed || exit_on_escape || app.windows.borrow().is_empty() {
true
} else {
false
};
exit
}