Struct nannou::glam::f64::DQuat

source ·
pub struct DQuat(/* private fields */);
Expand description

A quaternion representing an orientation.

This quaternion is intended to be of unit length but may denormalize due to floating point “error creep” which can occur when successive quaternion operations are applied.

Implementations§

source§

impl DQuat

source

pub const IDENTITY: DQuat = _

The identity quaternion. Corresponds to no rotation.

source

pub fn from_xyzw(x: f64, y: f64, z: f64, w: f64) -> DQuat

Creates a new rotation quaternion.

This should generally not be called manually unless you know what you are doing. Use one of the other constructors instead such as identity or from_axis_angle.

from_xyzw is mostly used by unit tests and serde deserialization.

Preconditions

This function does not check if the input is normalized, it is up to the user to provide normalized input or to normalized the resulting quaternion.

source

pub fn from_array(a: [f64; 4]) -> DQuat

Creates a rotation quaternion from an array.

Preconditions

This function does not check if the input is normalized, it is up to the user to provide normalized input or to normalized the resulting quaternion.

source

pub fn from_vec4(v: DVec4) -> DQuat

Creates a new rotation quaternion from a 4D vector.

Preconditions

This function does not check if the input is normalized, it is up to the user to provide normalized input or to normalized the resulting quaternion.

source

pub fn from_slice(slice: &[f64]) -> DQuat

Creates a rotation quaternion from a slice.

Preconditions

This function does not check if the input is normalized, it is up to the user to provide normalized input or to normalized the resulting quaternion.

Panics

Panics if slice length is less than 4.

source

pub fn write_to_slice(self, slice: &mut [f64])

Writes the quaternion to an unaligned slice.

Panics

Panics if slice length is less than 4.

source

pub fn from_axis_angle(axis: DVec3, angle: f64) -> DQuat

Create a quaternion for a normalized rotation axis and angle (in radians). The axis must be normalized (unit-length).

Panics

Will panic if axis is not normalized when glam_assert is enabled.

source

pub fn from_scaled_axis(v: DVec3) -> DQuat

Create a quaternion that rotates v.length() radians around v.normalize().

from_scaled_axis(Vec3::ZERO) results in the identity quaternion.

source

pub fn from_rotation_x(angle: f64) -> DQuat

Creates a quaternion from the angle (in radians) around the x axis.

source

pub fn from_rotation_y(angle: f64) -> DQuat

Creates a quaternion from the angle (in radians) around the y axis.

source

pub fn from_rotation_z(angle: f64) -> DQuat

Creates a quaternion from the angle (in radians) around the z axis.

source

pub fn from_euler(euler: EulerRot, a: f64, b: f64, c: f64) -> DQuat

Creates a quaternion from the given euler rotation sequence and the angles (in radians).

source

pub fn from_mat3(mat: &DMat3) -> DQuat

Creates a quaternion from a 3x3 rotation matrix.

source

pub fn from_mat4(mat: &DMat4) -> DQuat

Creates a quaternion from a 3x3 rotation matrix inside a homogeneous 4x4 matrix.

source

pub fn from_rotation_arc(from: DVec3, to: DVec3) -> DQuat

Gets the minimal rotation for transforming from to to. The rotation is in the plane spanned by the two vectors. Will rotate at most 180 degrees.

The input vectors must be normalized (unit-length).

from_rotation_arc(from, to) * from ≈ to.

For near-singular cases (from≈to and from≈-to) the current implementation is only accurate to about 0.001 (for f32).

Panics

Will panic if from or to are not normalized when glam_assert is enabled.

source

pub fn from_rotation_arc_colinear(from: DVec3, to: DVec3) -> DQuat

Gets the minimal rotation for transforming from to either to or -to. This means that the resulting quaternion will rotate from so that it is colinear with to.

The rotation is in the plane spanned by the two vectors. Will rotate at most 90 degrees.

The input vectors must be normalized (unit-length).

to.dot(from_rotation_arc_colinear(from, to) * from).abs() ≈ 1.

Panics

Will panic if from or to are not normalized when glam_assert is enabled.

source

pub fn to_axis_angle(self) -> (DVec3, f64)

Returns the rotation axis and angle (in radians) of self.

source

pub fn to_scaled_axis(self) -> DVec3

Returns the rotation axis scaled by the rotation in radians.

source

pub fn to_euler(self, euler: EulerRot) -> (f64, f64, f64)

Returns the rotation angles for the given euler rotation sequence.

source

pub fn conjugate(self) -> DQuat

Returns the quaternion conjugate of self. For a unit quaternion the conjugate is also the inverse.

source

pub fn inverse(self) -> DQuat

Returns the inverse of a normalized quaternion.

Typically quaternion inverse returns the conjugate of a normalized quaternion. Because self is assumed to already be unit length this method does not normalize before returning the conjugate.

Panics

Will panic if self is not normalized when glam_assert is enabled.

source

pub fn dot(self, other: DQuat) -> f64

Computes the dot product of self and other. The dot product is equal to the the cosine of the angle between two quaternion rotations.

source

pub fn length(self) -> f64

Computes the length of self.

source

pub fn length_squared(self) -> f64

Computes the squared length of self.

This is generally faster than length() as it avoids a square root operation.

source

pub fn length_recip(self) -> f64

Computes 1.0 / length().

For valid results, self must not be of length zero.

source

pub fn normalize(self) -> DQuat

Returns self normalized to length 1.0.

For valid results, self must not be of length zero.

Panics

Will panic if self is zero length when glam_assert is enabled.

source

pub fn is_finite(self) -> bool

Returns true if, and only if, all elements are finite. If any element is either NaN, positive or negative infinity, this will return false.

source

pub fn is_nan(self) -> bool

source

pub fn is_normalized(self) -> bool

Returns whether self of length 1.0 or not.

Uses a precision threshold of 1e-6.

source

pub fn is_near_identity(self) -> bool

source

pub fn angle_between(self, other: DQuat) -> f64

Returns the angle (in radians) for the minimal rotation for transforming this quaternion into another.

Both quaternions must be normalized.

Panics

Will panic if self or other are not normalized when glam_assert is enabled.

source

pub fn abs_diff_eq(self, other: DQuat, max_abs_diff: f64) -> bool

Returns true if the absolute difference of all elements between self and other is less than or equal to max_abs_diff.

This can be used to compare if two quaternions contain similar elements. It works best when comparing with a known value. The max_abs_diff that should be used used depends on the values being compared against.

For more see comparing floating point numbers.

source

pub fn lerp(self, end: DQuat, s: f64) -> DQuat

Performs a linear interpolation between self and other based on the value s.

When s is 0.0, the result will be equal to self. When s is 1.0, the result will be equal to other.

Panics

Will panic if self or end are not normalized when glam_assert is enabled.

source

pub fn slerp(self, end: DQuat, s: f64) -> DQuat

Performs a spherical linear interpolation between self and end based on the value s.

When s is 0.0, the result will be equal to self. When s is 1.0, the result will be equal to end.

Note that a rotation can be represented by two quaternions: q and -q. The slerp path between q and end will be different from the path between -q and end. One path will take the long way around and one will take the short way. In order to correct for this, the dot product between self and end should be positive. If the dot product is negative, slerp between -self and end.

Panics

Will panic if self or end are not normalized when glam_assert is enabled.

source

pub fn mul_vec3(self, other: DVec3) -> DVec3

Multiplies a quaternion and a 3D vector, returning the rotated vector.

Panics

Will panic if self is not normalized when glam_assert is enabled.

source

pub fn mul_quat(self, other: DQuat) -> DQuat

Multiplies two quaternions. If they each represent a rotation, the result will represent the combined rotation.

Note that due to floating point rounding the result may not be perfectly normalized.

Panics

Will panic if self or other are not normalized when glam_assert is enabled.

source

pub fn as_f32(self) -> Quat

source

pub fn from_affine3(mat: &DAffine3) -> DQuat

Creates a quaternion from a 3x3 rotation matrix inside a 3D affine transform.

Trait Implementations§

source§

impl Add for DQuat

source§

fn add(self, other: DQuat) -> DQuat

Adds two quaternions.

The sum is not guaranteed to be normalized.

Note that addition is not the same as combining the rotations represented by the two quaternions! That corresponds to multiplication.

§

type Output = DQuat

The resulting type after applying the + operator.
source§

impl AsMut<[f64; 4]> for DQuat

source§

fn as_mut(&mut self) -> &mut [f64; 4]

Converts this type into a mutable reference of the (usually inferred) input type.
source§

impl AsRef<[f64; 4]> for DQuat

source§

fn as_ref(&self) -> &[f64; 4]

Converts this type into a shared reference of the (usually inferred) input type.
source§

impl Clone for DQuat

source§

fn clone(&self) -> DQuat

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Debug for DQuat

source§

fn fmt(&self, fmt: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
source§

impl Default for DQuat

source§

fn default() -> DQuat

Returns the “default value” for a type. Read more
source§

impl Deref for DQuat

§

type Target = XYZW<f64>

The resulting type after dereferencing.
source§

fn deref(&self) -> &<DQuat as Deref>::Target

Dereferences the value.
source§

impl<'de> Deserialize<'de> for DQuat

source§

fn deserialize<D>( deserializer: D ) -> Result<DQuat, <D as Deserializer<'de>>::Error>
where D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
source§

impl Display for DQuat

source§

fn fmt(&self, fmt: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
source§

impl Distribution<DQuat> for Standard

source§

fn sample<R>(&self, rng: &mut R) -> DQuat
where R: Rng + ?Sized,

Generate a random value of T, using rng as the source of randomness.
source§

fn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T>
where R: Rng, Self: Sized,

Create an iterator that generates random values of T, using rng as the source of randomness. Read more
source§

fn map<F, S>(self, func: F) -> DistMap<Self, F, T, S>
where F: Fn(T) -> S, Self: Sized,

Create a distribution of values of ‘S’ by mapping the output of Self through the closure F Read more
source§

impl Div<f64> for DQuat

source§

fn div(self, other: f64) -> DQuat

Divides a quaternion by a scalar value. The quotient is not guaranteed to be normalized.

§

type Output = DQuat

The resulting type after applying the / operator.
source§

impl From<DQuat> for [f64; 4]

source§

fn from(q: DQuat) -> [f64; 4]

Converts to this type from the input type.
source§

impl From<DQuat> for DVec4

source§

fn from(q: DQuat) -> DVec4

Converts to this type from the input type.
source§

impl From<DQuat> for XYZW<f64>

source§

fn from(q: DQuat) -> XYZW<f64>

Converts to this type from the input type.
source§

impl Mul<DVec3> for DQuat

source§

fn mul(self, other: DVec3) -> <DQuat as Mul<DVec3>>::Output

Multiplies a quaternion and a 3D vector, returning the rotated vector.

Panics

Will panic if self is not normalized when glam_assert is enabled.

§

type Output = DVec3

The resulting type after applying the * operator.
source§

impl Mul<f64> for DQuat

source§

fn mul(self, other: f64) -> DQuat

Multiplies a quaternion by a scalar value.

The product is not guaranteed to be normalized.

§

type Output = DQuat

The resulting type after applying the * operator.
source§

impl Mul for DQuat

source§

fn mul(self, other: DQuat) -> DQuat

Multiplies two quaternions. If they each represent a rotation, the result will represent the combined rotation.

Note that due to floating point rounding the result may not be perfectly normalized.

Panics

Will panic if self or other are not normalized when glam_assert is enabled.

§

type Output = DQuat

The resulting type after applying the * operator.
source§

impl MulAssign for DQuat

source§

fn mul_assign(&mut self, other: DQuat)

Multiplies two quaternions. If they each represent a rotation, the result will represent the combined rotation.

Note that due to floating point rounding the result may not be perfectly normalized.

Panics

Will panic if self or other are not normalized when glam_assert is enabled.

source§

impl Neg for DQuat

§

type Output = DQuat

The resulting type after applying the - operator.
source§

fn neg(self) -> DQuat

Performs the unary - operation. Read more
source§

impl PartialEq for DQuat

source§

fn eq(&self, other: &DQuat) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a> Product<&'a DQuat> for DQuat

source§

fn product<I>(iter: I) -> DQuat
where I: Iterator<Item = &'a DQuat>,

Method which takes an iterator and generates Self from the elements by multiplying the items.
source§

impl Serialize for DQuat

source§

fn serialize<S>( &self, serializer: S ) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>
where S: Serializer,

Serialize this value into the given Serde serializer. Read more
source§

impl Sub for DQuat

source§

fn sub(self, other: DQuat) -> DQuat

Subtracts the other quaternion from self.

The difference is not guaranteed to be normalized.

§

type Output = DQuat

The resulting type after applying the - operator.
source§

impl<'a> Sum<&'a DQuat> for DQuat

source§

fn sum<I>(iter: I) -> DQuat
where I: Iterator<Item = &'a DQuat>,

Method which takes an iterator and generates Self from the elements by “summing up” the items.
source§

impl Copy for DQuat

Auto Trait Implementations§

§

impl RefUnwindSafe for DQuat

§

impl Send for DQuat

§

impl Sync for DQuat

§

impl Unpin for DQuat

§

impl UnwindSafe for DQuat

Blanket Implementations§

source§

impl<S, D, Swp, Dwp, T> AdaptInto<D, Swp, Dwp, T> for S
where T: Component + Float, Swp: WhitePoint, Dwp: WhitePoint, D: AdaptFrom<S, Swp, Dwp, T>,

source§

fn adapt_into_using<M>(self, method: M) -> D
where M: TransformMatrix<Swp, Dwp, T>,

Convert the source color to the destination color using the specified method
source§

fn adapt_into(self) -> D

Convert the source color to the destination color using the bradford method by default
source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T, U> ConvertInto<U> for T
where U: ConvertFrom<T>,

source§

fn convert_into(self) -> U

Convert into T with values clamped to the color defined bounds Read more
source§

fn convert_unclamped_into(self) -> U

Convert into T. The resulting color might be invalid in its color space Read more
source§

fn try_convert_into(self) -> Result<U, OutOfBounds<U>>

Convert into T, returning ok if the color is inside of its defined range, otherwise an OutOfBounds error is returned which contains the unclamped color. Read more
§

impl<T> Downcast<T> for T

§

fn downcast(&self) -> &T

source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

§

impl<T> Pointable for T

§

const ALIGN: usize = _

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T> ToString for T
where T: Display + ?Sized,

source§

default fn to_string(&self) -> String

Converts the given value to a String. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<T> Upcast<T> for T

§

fn upcast(&self) -> Option<&T>

§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

source§

impl<T> DeserializeOwned for T
where T: for<'de> Deserialize<'de>,

§

impl<T> WasmNotSend for T
where T: Send,

§

impl<T> WasmNotSync for T
where T: Sync,