1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
use crate::geom::{tri, vertex, Cuboid, Range, Rect, Tri, Vertex, Vertex2d, Vertex3d};
use crate::math::EuclideanSpace;
use std::ops::{Deref, Index};

/// The number of vertices in a quad.
pub const NUM_VERTICES: u8 = 4;

/// The number of triangles that make up a quad.
pub const NUM_TRIANGLES: u8 = 2;

/// The same as `triangles`, but instead returns the vertex indices for each triangle.
pub const TRIANGLE_INDEX_TRIS: TrianglesIndexTris = [[0, 1, 2], [0, 2, 3]];
pub type TrianglesIndexTris = [[usize; tri::NUM_VERTICES as usize]; NUM_TRIANGLES as usize];

/// The number of indices used to describe each triangle in the quad.
pub const NUM_TRIANGLE_INDICES: u8 = 6;

/// The same as `triangles`, but instead returns the vertex indices for each triangle.
pub const TRIANGLE_INDICES: [usize; NUM_TRIANGLE_INDICES as usize] = [0, 1, 2, 0, 2, 3];

/// A quad represented by its four vertices.
#[derive(Copy, Clone, Debug, Eq, Hash, PartialEq)]
pub struct Quad<V = vertex::Default>(pub [V; NUM_VERTICES as usize]);

/// An `Iterator` yielding the two triangles that make up a quad.
#[derive(Clone, Debug)]
pub struct Triangles<V = vertex::Default> {
    a: Option<Tri<V>>,
    b: Option<Tri<V>>,
}

/// A simple iterator yielding each vertex in a `Quad`.
#[derive(Clone, Debug)]
pub struct Vertices<V = vertex::Default> {
    quad: Quad<V>,
    index: u8,
}

impl<V> Quad<V>
where
    V: Vertex,
{
    /// Produce an iterator yielding each vertex in the `Quad`.
    pub fn vertices(self) -> Vertices<V> {
        vertices(self)
    }

    /// Produce the centroid of the quad, aka the "mean"/"average" vertex.
    pub fn centroid(&self) -> V
    where
        V: EuclideanSpace,
    {
        centroid(self)
    }

    /// Triangulates the given quad, represented by four points that describe its edges in either
    /// clockwise or anti-clockwise order.
    ///
    /// # Example
    ///
    /// The following rectangle
    ///
    /// ```ignore
    ///  a        b
    ///   --------
    ///   |      |
    ///   |      |
    ///   |      |
    ///   --------
    ///  d        c
    ///
    /// ```
    ///
    /// given as
    ///
    /// ```ignore
    /// triangles([a, b, c, d])
    /// ```
    ///
    /// returns
    ///
    /// ```ignore
    /// (Tri([a, b, c]), Tri([a, c, d]))
    /// ```
    ///
    /// Here's a basic code example:
    ///
    /// ```
    /// use nannou::geom::{self, pt2, Quad, Tri};
    ///
    /// fn main() {
    ///     let a = pt2(0.0, 1.0);
    ///     let b = pt2(1.0, 1.0);
    ///     let c = pt2(1.0, 0.0);
    ///     let d = pt2(0.0, 0.0);
    ///     let quad = Quad([a, b, c, d]);
    ///     let triangles = geom::quad::triangles(&quad);
    ///     assert_eq!(triangles, (Tri([a, b, c]), Tri([a, c, d])));
    /// }
    /// ```
    #[inline]
    pub fn triangles(&self) -> (Tri<V>, Tri<V>) {
        triangles(self)
    }

    /// The same as `triangles` but provided as an **Iterator**.
    pub fn triangles_iter(&self) -> Triangles<V> {
        triangles_iter(self)
    }

    /// The bounding `Rect` of the quad.
    pub fn bounding_rect(self) -> Rect<V::Scalar>
    where
        V: Vertex2d,
    {
        let (a, b, c, d) = self.into();
        let (a, b, c, d) = (a.point2(), b.point2(), c.point2(), d.point2());
        let rect = Rect {
            x: Range::new(a.x, a.x),
            y: Range::new(a.y, a.y),
        };
        rect.stretch_to_point(b)
            .stretch_to_point(c)
            .stretch_to_point(d)
    }

    /// The bounding `Rect` of the triangle.
    pub fn bounding_cuboid(self) -> Cuboid<V::Scalar>
    where
        V: Vertex3d,
    {
        let (a, b, c, d) = self.into();
        let (a, b, c, d) = (a.point3(), b.point3(), c.point3(), d.point3());
        let cuboid = Cuboid {
            x: Range::new(a.x, a.x),
            y: Range::new(a.y, a.y),
            z: Range::new(a.z, a.z),
        };
        cuboid
            .stretch_to_point(b)
            .stretch_to_point(c)
            .stretch_to_point(d)
    }

    /// Map the **Quad**'s vertices to a new type.
    pub fn map_vertices<F, V2>(self, mut map: F) -> Quad<V2>
    where
        F: FnMut(V) -> V2,
    {
        let (a, b, c, d) = self.into();
        Quad([map(a), map(b), map(c), map(d)])
    }
}

/// Produce an iterator yielding each vertex in the given **Quad**.
pub fn vertices<V>(quad: Quad<V>) -> Vertices<V> {
    let index = 0;
    Vertices { quad, index }
}

/// Produce the centroid of the quad, aka the "mean"/"average" vertex.
pub fn centroid<V>(quad: &Quad<V>) -> V
where
    V: EuclideanSpace,
{
    EuclideanSpace::centroid(&quad[..])
}

/// Triangulates the given quad, represented by four points that describe its edges in either
/// clockwise or anti-clockwise order.
///
/// # Example
///
/// The following rectangle
///
/// ```ignore
///
///  a        b
///   --------
///   |      |
///   |      |
///   |      |
///   --------
///  d        c
///
/// ```
///
/// given as
///
/// ```ignore
/// triangles([a, b, c, d])
/// ```
///
/// returns
///
/// ```ignore
/// (Tri([a, b, c]), Tri([a, c, d]))
/// ```
///
/// Here's a basic code example:
///
/// ```
/// use nannou::geom::{self, pt2, Quad, Tri};
///
/// fn main() {
///     let a = pt2(0.0, 1.0);
///     let b = pt2(1.0, 1.0);
///     let c = pt2(1.0, 0.0);
///     let d = pt2(0.0, 0.0);
///     let quad = Quad([a, b, c, d]);
///     let triangles = geom::quad::triangles(&quad);
///     assert_eq!(triangles, (Tri([a, b, c]), Tri([a, c, d])));
/// }
/// ```
#[inline]
pub fn triangles<V>(q: &Quad<V>) -> (Tri<V>, Tri<V>)
where
    V: Vertex,
{
    let a = Tri::from_index_tri(&q.0, &TRIANGLE_INDEX_TRIS[0]);
    let b = Tri::from_index_tri(&q.0, &TRIANGLE_INDEX_TRIS[1]);
    (a, b)
}

/// The same as `triangles` but provided as an `Iterator`.
pub fn triangles_iter<V>(points: &Quad<V>) -> Triangles<V>
where
    V: Vertex,
{
    let (a, b) = triangles(points);
    Triangles {
        a: Some(a),
        b: Some(b),
    }
}

impl<V> Iterator for Triangles<V> {
    type Item = Tri<V>;
    fn next(&mut self) -> Option<Self::Item> {
        self.a.take().or_else(|| self.b.take())
    }
    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = self.len();
        (len, Some(len))
    }
}

impl<V> DoubleEndedIterator for Triangles<V> {
    fn next_back(&mut self) -> Option<Self::Item> {
        self.b.take().or_else(|| self.a.take())
    }
}

impl<V> ExactSizeIterator for Triangles<V> {
    fn len(&self) -> usize {
        match (&self.a, &self.b) {
            (&Some(_), &Some(_)) => 2,
            (&None, &Some(_)) => 0,
            _ => 1,
        }
    }
}

impl<V> Iterator for Vertices<V>
where
    V: Clone,
{
    type Item = V;
    fn next(&mut self) -> Option<Self::Item> {
        if self.index < NUM_VERTICES {
            let v = self.quad[self.index as usize].clone();
            self.index += 1;
            Some(v)
        } else {
            None
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = self.len();
        (len, Some(len))
    }
}

impl<V> ExactSizeIterator for Vertices<V>
where
    V: Clone,
{
    fn len(&self) -> usize {
        NUM_VERTICES as usize - self.index as usize
    }
}

impl<V> Deref for Quad<V> {
    type Target = [V; NUM_VERTICES as usize];
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl<V> From<[V; NUM_VERTICES as usize]> for Quad<V>
where
    V: Vertex,
{
    fn from(points: [V; NUM_VERTICES as usize]) -> Self {
        Quad(points)
    }
}

impl<V> From<(V, V, V, V)> for Quad<V>
where
    V: Vertex,
{
    fn from((a, b, c, d): (V, V, V, V)) -> Self {
        Quad([a, b, c, d])
    }
}

impl<V> Into<[V; NUM_VERTICES as usize]> for Quad<V>
where
    V: Vertex,
{
    fn into(self) -> [V; NUM_VERTICES as usize] {
        self.0
    }
}

impl<V> Into<(V, V, V, V)> for Quad<V>
where
    V: Vertex,
{
    fn into(self) -> (V, V, V, V) {
        (self[0], self[1], self[2], self[3])
    }
}

impl<V> AsRef<Quad<V>> for Quad<V>
where
    V: Vertex,
{
    fn as_ref(&self) -> &Quad<V> {
        self
    }
}

impl<V> AsRef<[V; NUM_VERTICES as usize]> for Quad<V>
where
    V: Vertex,
{
    fn as_ref(&self) -> &[V; NUM_VERTICES as usize] {
        &self.0
    }
}

impl<V> Index<usize> for Quad<V>
where
    V: Vertex,
{
    type Output = V;
    fn index(&self, index: usize) -> &Self::Output {
        &self.0[index]
    }
}