1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
//! Items related to wgpu and its integration in nannou!
//!
//! **WebGPU** is the portable graphics specification that nannou targets allowing us to write code
//! that is both fast and allows us to target a wide range of platforms. **wgpu** is the name of
//! the crate we use that implements this specification.
//!
//! This module re-exports the entire `wgpu` crate along with all of its documentation while also
//! adding some additional items that makes `wgpu` easier to use alongside nannou.
//!
//! Useful links:
//!
//! - An awesome [guide for wgpu-rs](https://sotrh.github.io/learn-wgpu/#what-is-wgpu). Highly
//!   recommended reading if you would like to work more closely with the GPU in nannou!
//! - The [wgpu-rs repository](https://github.com/gfx-rs/wgpu-rs).
//! - The [WebGPU specification](https://gpuweb.github.io/gpuweb/).
//! - WebGPU [on wikipedia](https://en.wikipedia.org/wiki/WebGPU).

mod bind_group_builder;
pub mod blend;
mod device_map;
mod render_pass;
mod render_pipeline_builder;
mod sampler_builder;
mod texture;

// Re-export all of `wgpu` along with its documentation.
//
// We do this manually rather than a glob-re-export in order to rename `Texture` to `TextureHandle`
// and have it show up in the documentation properly.
pub use self::bind_group_builder::{
    Builder as BindGroupBuilder, LayoutBuilder as BindGroupLayoutBuilder,
};
pub use self::device_map::{
    ActiveAdapter, AdapterMap, AdapterMapKey, DeviceMap, DeviceMapKey, DeviceQueuePair,
};
pub use self::render_pass::{
    Builder as RenderPassBuilder,
    ColorAttachmentDescriptorBuilder as RenderPassColorAttachmentDescriptorBuilder,
};
pub use self::render_pipeline_builder::RenderPipelineBuilder;
pub use self::sampler_builder::SamplerBuilder;
pub use self::texture::capturer::{
    AwaitWorkerTimeout as TextureCapturerAwaitWorkerTimeout, Capturer as TextureCapturer,
    Snapshot as Textue5cfe74reSnapshot,
};
pub use self::texture::image::format_from_image_color_type as texture_format_from_image_color_type;
pub use self::texture::reshaper::Reshaper as TextureReshaper;
pub use self::texture::row_padded_buffer::{ImageHolder, ImageReadMapping, RowPaddedBuffer};
pub use self::texture::{
    descriptor_eq as texture_descriptor_eq, extent_3d_eq,
    format_size_bytes as texture_format_size_bytes, Builder as TextureBuilder, Texture, TextureId,
    TextureView, TextureViewId, ToTextureView,
};
#[doc(inline)]
pub use wgpu_upstream::{
    util::{self, BufferInitDescriptor},
    vertex_attr_array, Adapter, AdapterInfo, AddressMode, Backend, BackendBit, BindGroup,
    BindGroupDescriptor, BindGroupEntry, BindGroupLayout, BindGroupLayoutDescriptor,
    BindGroupLayoutEntry, BindingResource, BindingType, BlendFactor, BlendOperation, BlendState,
    Buffer, BufferAddress, BufferAsyncError, BufferBindingType, BufferCopyView, BufferCopyViewBase,
    BufferDescriptor, BufferSize, BufferSlice, BufferUsage, BufferView, BufferViewMut, Color,
    ColorTargetState, ColorWrite, CommandBuffer, CommandBufferDescriptor, CommandEncoder,
    CommandEncoderDescriptor, CompareFunction, ComputePass, ComputePassDescriptor, ComputePipeline,
    ComputePipelineDescriptor, CullMode, DepthBiasState, DepthStencilState, Device,
    DeviceDescriptor, DeviceType, DynamicOffset, Error, Extent3d, Features, FilterMode,
    FragmentState, FrontFace, IndexFormat, InputStepMode, Instance, Label, Limits, LoadOp,
    Maintain, MapMode, MultisampleState, Operations, Origin3d, PipelineLayout,
    PipelineLayoutDescriptor, PipelineStatisticsTypes, PolygonMode, PowerPreference, PresentMode,
    PrimitiveState, PrimitiveTopology, PushConstantRange, QuerySet, QuerySetDescriptor, QueryType,
    Queue, RenderBundle, RenderBundleDescriptor, RenderBundleEncoder,
    RenderBundleEncoderDescriptor, RenderPass, RenderPassColorAttachmentDescriptor,
    RenderPassDepthStencilAttachmentDescriptor, RenderPassDescriptor, RenderPipeline,
    RenderPipelineDescriptor, RequestAdapterOptions, RequestAdapterOptionsBase, RequestDeviceError,
    Sampler, SamplerBorderColor, SamplerDescriptor, ShaderFlags, ShaderLocation, ShaderModule,
    ShaderModuleDescriptor, ShaderSource, ShaderStage, StencilFaceState, StencilOperation,
    StencilState, StorageTextureAccess, Surface, SwapChain, SwapChainDescriptor, SwapChainError,
    SwapChainFrame, SwapChainStatus, SwapChainTexture, Texture as TextureHandle, TextureAspect,
    TextureCopyView, TextureCopyViewBase, TextureDataLayout, TextureDescriptor, TextureDimension,
    TextureFormat, TextureSampleType, TextureUsage, TextureView as TextureViewHandle,
    TextureViewDescriptor, TextureViewDimension, UncapturedErrorHandler, VertexAttribute,
    VertexBufferLayout, VertexFormat, VertexState, BIND_BUFFER_ALIGNMENT, COPY_BUFFER_ALIGNMENT,
    COPY_BYTES_PER_ROW_ALIGNMENT, PUSH_CONSTANT_ALIGNMENT,
};

pub fn shader_from_spirv_bytes(
    device: &wgpu_upstream::Device,
    bytes: &[u8],
) -> wgpu_upstream::ShaderModule {
    let source = util::make_spirv(bytes);
    let desc = ShaderModuleDescriptor {
        label: Some("nannou_shader_module"),
        source,
        flags: ShaderFlags::VALIDATION,
    };
    device.create_shader_module(&desc)
}

/// The default power preference used for requesting the WGPU adapter.
pub const DEFAULT_POWER_PREFERENCE: PowerPreference = PowerPreference::HighPerformance;

/// Nannou's default WGPU backend preferences.
pub const DEFAULT_BACKENDS: BackendBit = BackendBit::PRIMARY;

/// Adds a simple render pass command to the given encoder that simply clears the given texture
/// with the given colour.
///
/// The given `texture` must have `TextureUsage::OUTPUT_ATTACHMENT` enabled.
pub fn clear_texture(
    texture: &TextureViewHandle,
    clear_color: Color,
    encoder: &mut CommandEncoder,
) {
    RenderPassBuilder::new()
        .color_attachment(texture, |builder| {
            builder.load_op(LoadOp::Clear(clear_color))
        })
        .begin(encoder);
}

/// The default device descriptor used to instantiate a logical device when creating windows.
pub fn default_device_descriptor() -> DeviceDescriptor<'static> {
    let features = Features::default();
    let limits = Limits::default();
    DeviceDescriptor {
        label: Some("nannou_device"),
        features,
        limits,
    }
}

/// Adds a simple render pass command to the given encoder that resolves the given multisampled
/// `src_texture` to the given non-multisampled `dst_texture`.
///
/// Both the `src_texture` and `dst_texture` must have:
///
/// - `TextureUsage::OUTPUT_ATTACHMENT` enabled.
/// - The same dimensions.
/// - The same `TextureFormat`.
pub fn resolve_texture(
    src_texture: &TextureViewHandle,
    dst_texture: &TextureViewHandle,
    encoder: &mut CommandEncoder,
) {
    RenderPassBuilder::new()
        .color_attachment(src_texture, |color| {
            color
                .load_op(LoadOp::Load)
                .resolve_target_handle(Some(dst_texture))
        })
        .begin(encoder);
}

/// Shorthand for creating the pipeline layout from a slice of bind group layouts.
pub fn create_pipeline_layout<'p>(
    device: &wgpu_upstream::Device,
    label: Option<&'p str>,
    bind_group_layouts: &[&wgpu_upstream::BindGroupLayout],
    push_constant_ranges: &'p [wgpu_upstream::PushConstantRange],
) -> wgpu_upstream::PipelineLayout {
    let descriptor = wgpu_upstream::PipelineLayoutDescriptor {
        label,
        bind_group_layouts,
        push_constant_ranges,
    };
    device.create_pipeline_layout(&descriptor)
}

/// Whether or not the sampler descriptor describes a sampler that might perform linear filtering.
///
/// This is used to determine the `filtering` field for the sampler binding type variant which
/// assists wgpu with validation.
pub fn sampler_filtering(desc: &SamplerDescriptor) -> bool {
    match (desc.mag_filter, desc.min_filter, desc.mipmap_filter) {
        (FilterMode::Nearest, FilterMode::Nearest, FilterMode::Nearest) => false,
        _ => true,
    }
}

/// The functions within this module use unsafe in order to retrieve their input as a slice of
/// bytes. This is necessary in order to upload data to the GPU via the wgpu
/// `DeviceExt::create_buffer_init` buffer constructor. This method is unsafe as the type `T` may contain
/// padding which is considered to be uninitialised memory in Rust and may potentially lead to
/// undefined behaviour.
///
/// These should be replaced in the future with something similar to `zerocopy`. Unfortunately, we
/// don't gain much benefit from using `zerocopy` in our case as `zerocopy` provides no way to
/// implement the `AsBytes` trait for generic types (e.g. `Vector*`), even with their type
/// parameters filled (e.g. `Vector2<f32>`). This means we can't derive `AsBytes` for the majority
/// of the types where we need to as `derive(AsBytes)` requires that all fields implement
/// `AsBytes`, and neither our `Vector` types or the palette color types can implement it.
///
/// There is a relatively new crate `bytemuck` which provides traits for this, however these traits
/// are `unsafe` and so we don't gain much benefit in terms of safety, especially for our simple
/// use-case. There is a `zeroable` crate that attempts to derive the `Zeroable` trait from
/// `bytemuck`, however:
/// 1. there not yet any other publicly dependent crates or public discussion around the safety of
///    the provided derives and
/// 2. we would still require implementing `Pod` unsafely.
pub mod bytes {
    pub unsafe fn from_slice<T>(slice: &[T]) -> &[u8]
    where
        T: Copy + Sized,
    {
        let len = slice.len() * std::mem::size_of::<T>();
        let ptr = slice.as_ptr() as *const u8;
        std::slice::from_raw_parts(ptr, len)
    }

    pub unsafe fn from<T>(t: &T) -> &[u8]
    where
        T: Copy + Sized,
    {
        let len = std::mem::size_of::<T>();
        let ptr = t as *const T as *const u8;
        std::slice::from_raw_parts(ptr, len)
    }

    /// This is really an astonishingly unsafe function.
    /// Please don't use it.
    pub unsafe fn to_slice<T>(slice: &[u8]) -> &[T]
    where
        T: Copy + Sized,
    {
        let size = std::mem::size_of::<T>();
        let align = std::mem::align_of::<T>();
        assert_eq!(slice.len() % size, 0, "incorrect buffer size");
        assert_eq!(
            slice.as_ptr() as usize % align,
            0,
            "incorrect buffer alignment"
        );
        let len = slice.len() / size;
        let ptr = slice.as_ptr() as *const T;
        std::slice::from_raw_parts(ptr, len)
    }
}