Trait nannou::rand::seq::SliceRandom[][src]

pub trait SliceRandom {
    type Item;
    pub fn choose<R>(&self, rng: &mut R) -> Option<&Self::Item>
    where
        R: Rng + ?Sized
;
pub fn choose_mut<R>(&mut self, rng: &mut R) -> Option<&mut Self::Item>
    where
        R: Rng + ?Sized
;
pub fn choose_multiple<R>(
        &self,
        rng: &mut R,
        amount: usize
    ) -> SliceChooseIter<'_, Self, Self::Item>

Notable traits for SliceChooseIter<'a, S, T>

impl<'a, S, T> Iterator for SliceChooseIter<'a, S, T> where
    S: Index<usize, Output = T> + 'a + ?Sized,
    T: 'a, 
type Item = &'a T;

    where
        R: Rng + ?Sized
;
pub fn choose_weighted<R, F, B, X>(
        &self,
        rng: &mut R,
        weight: F
    ) -> Result<&Self::Item, WeightedError>
    where
        F: Fn(&Self::Item) -> B,
        X: SampleUniform + for<'a> AddAssign<&'a X> + PartialOrd<X> + Clone + Default,
        R: Rng + ?Sized,
        B: SampleBorrow<X>
;
pub fn choose_weighted_mut<R, F, B, X>(
        &mut self,
        rng: &mut R,
        weight: F
    ) -> Result<&mut Self::Item, WeightedError>
    where
        F: Fn(&Self::Item) -> B,
        X: SampleUniform + for<'a> AddAssign<&'a X> + PartialOrd<X> + Clone + Default,
        R: Rng + ?Sized,
        B: SampleBorrow<X>
;
pub fn shuffle<R>(&mut self, rng: &mut R)
    where
        R: Rng + ?Sized
;
pub fn partial_shuffle<R>(
        &mut self,
        rng: &mut R,
        amount: usize
    ) -> (&mut [Self::Item], &mut [Self::Item])
    where
        R: Rng + ?Sized
; }

Extension trait on slices, providing random mutation and sampling methods.

This trait is implemented on all [T] slice types, providing several methods for choosing and shuffling elements. You must use this trait:

use rand::seq::SliceRandom;

fn main() {
    let mut rng = rand::thread_rng();
    let mut bytes = "Hello, random!".to_string().into_bytes();
    bytes.shuffle(&mut rng);
    let str = String::from_utf8(bytes).unwrap();
    println!("{}", str);
}

Example output (non-deterministic):

l,nmroHado !le

Associated Types

type Item[src]

The element type.

Loading content...

Required methods

pub fn choose<R>(&self, rng: &mut R) -> Option<&Self::Item> where
    R: Rng + ?Sized
[src]

Returns a reference to one random element of the slice, or None if the slice is empty.

For slices, complexity is O(1).

Example

use rand::thread_rng;
use rand::seq::SliceRandom;

let choices = [1, 2, 4, 8, 16, 32];
let mut rng = thread_rng();
println!("{:?}", choices.choose(&mut rng));
assert_eq!(choices[..0].choose(&mut rng), None);

pub fn choose_mut<R>(&mut self, rng: &mut R) -> Option<&mut Self::Item> where
    R: Rng + ?Sized
[src]

Returns a mutable reference to one random element of the slice, or None if the slice is empty.

For slices, complexity is O(1).

pub fn choose_multiple<R>(
    &self,
    rng: &mut R,
    amount: usize
) -> SliceChooseIter<'_, Self, Self::Item>

Notable traits for SliceChooseIter<'a, S, T>

impl<'a, S, T> Iterator for SliceChooseIter<'a, S, T> where
    S: Index<usize, Output = T> + 'a + ?Sized,
    T: 'a, 
type Item = &'a T;
where
    R: Rng + ?Sized
[src]

Chooses amount elements from the slice at random, without repetition, and in random order. The returned iterator is appropriate both for collection into a Vec and filling an existing buffer (see example).

In case this API is not sufficiently flexible, use index::sample.

For slices, complexity is the same as index::sample.

Example

use rand::seq::SliceRandom;

let mut rng = &mut rand::thread_rng();
let sample = "Hello, audience!".as_bytes();

// collect the results into a vector:
let v: Vec<u8> = sample.choose_multiple(&mut rng, 3).cloned().collect();

// store in a buffer:
let mut buf = [0u8; 5];
for (b, slot) in sample.choose_multiple(&mut rng, buf.len()).zip(buf.iter_mut()) {
    *slot = *b;
}

pub fn choose_weighted<R, F, B, X>(
    &self,
    rng: &mut R,
    weight: F
) -> Result<&Self::Item, WeightedError> where
    F: Fn(&Self::Item) -> B,
    X: SampleUniform + for<'a> AddAssign<&'a X> + PartialOrd<X> + Clone + Default,
    R: Rng + ?Sized,
    B: SampleBorrow<X>, 
[src]

Similar to choose, but where the likelihood of each outcome may be specified.

The specified function weight maps each item x to a relative likelihood weight(x). The probability of each item being selected is therefore weight(x) / s, where s is the sum of all weight(x).

For slices of length n, complexity is O(n). See also choose_weighted_mut, distributions::weighted.

Example

use rand::prelude::*;

let choices = [('a', 2), ('b', 1), ('c', 1)];
let mut rng = thread_rng();
// 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c'
println!("{:?}", choices.choose_weighted(&mut rng, |item| item.1).unwrap().0);

pub fn choose_weighted_mut<R, F, B, X>(
    &mut self,
    rng: &mut R,
    weight: F
) -> Result<&mut Self::Item, WeightedError> where
    F: Fn(&Self::Item) -> B,
    X: SampleUniform + for<'a> AddAssign<&'a X> + PartialOrd<X> + Clone + Default,
    R: Rng + ?Sized,
    B: SampleBorrow<X>, 
[src]

Similar to choose_mut, but where the likelihood of each outcome may be specified.

The specified function weight maps each item x to a relative likelihood weight(x). The probability of each item being selected is therefore weight(x) / s, where s is the sum of all weight(x).

For slices of length n, complexity is O(n). See also choose_weighted, distributions::weighted.

pub fn shuffle<R>(&mut self, rng: &mut R) where
    R: Rng + ?Sized
[src]

Shuffle a mutable slice in place.

For slices of length n, complexity is O(n).

Example

use rand::seq::SliceRandom;
use rand::thread_rng;

let mut rng = thread_rng();
let mut y = [1, 2, 3, 4, 5];
println!("Unshuffled: {:?}", y);
y.shuffle(&mut rng);
println!("Shuffled:   {:?}", y);

pub fn partial_shuffle<R>(
    &mut self,
    rng: &mut R,
    amount: usize
) -> (&mut [Self::Item], &mut [Self::Item]) where
    R: Rng + ?Sized
[src]

Shuffle a slice in place, but exit early.

Returns two mutable slices from the source slice. The first contains amount elements randomly permuted. The second has the remaining elements that are not fully shuffled.

This is an efficient method to select amount elements at random from the slice, provided the slice may be mutated.

If you only need to choose elements randomly and amount > self.len()/2 then you may improve performance by taking amount = values.len() - amount and using only the second slice.

If amount is greater than the number of elements in the slice, this will perform a full shuffle.

For slices, complexity is O(m) where m = amount.

Loading content...

Implementations on Foreign Types

impl<T> SliceRandom for [T][src]

type Item = T

Loading content...

Implementors

Loading content...