1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
//! A simple API for drawing 2D and 3D graphics.
//!
//! See the [**Draw** type](./struct.Draw.html) for more details.

use crate::geom::{self, Point2};
use crate::math::{deg_to_rad, turns_to_rad, BaseFloat, Matrix4, SquareMatrix};
use crate::wgpu;
use lyon::path::PathEvent;
use std::cell::RefCell;
use std::collections::HashMap;
use std::mem;
use std::rc::Rc;

pub use self::background::Background;
pub use self::drawing::{Drawing, DrawingContext};
use self::mesh::vertex::Color;
pub use self::mesh::Mesh;
use self::primitive::Primitive;
pub use self::renderer::{Builder as RendererBuilder, Renderer};
pub use self::theme::Theme;

pub mod background;
mod drawing;
pub mod mesh;
pub mod primitive;
pub mod properties;
pub mod renderer;
pub mod theme;

/// A simple API for drawing 2D and 3D graphics.
///
/// **Draw** provides a simple way to compose together geometry and text with custom colours and
/// textures and draw them to the screen. A suite of methods have been provided for drawing
/// polygons, paths, meshes, text and textures in an accessible-yet-efficient manner.
///
/// **Draw** can also be used to create new **Draw** instances that refer to the same inner draw
/// state but are slightly different from one another. E.g. `draw.rotate(radians)` produces a new
/// **Draw** instance where all drawings will be rotated by the given amount. `draw.x(x)` produces
/// a new **Draw** instance where all drawings are translated along the *x* axis by the given
/// amount.
///
/// See the [draw](https://github.com/nannou-org/nannou/blob/master/examples) examples for a
/// variety of demonstrations of how the **Draw** type can be used!
#[derive(Clone, Debug)]
pub struct Draw<S = geom::scalar::Default>
where
    S: BaseFloat,
{
    /// The state of the **Draw**.
    ///
    /// State is shared between this **Draw** instance and all other **Draw** instances that were
    /// produced by cloning or changing transform, scissor or blend mode.
    ///
    /// We use a `RefCell` in order to avoid requiring a `mut` handle to a `draw`. The primary
    /// purpose of a **Draw** is to be an easy-as-possible, high-level API for drawing stuff. In
    /// order to be friendlier to new users, we want to avoid them having to think about mutability
    /// and focus on creativity. Rust-lang nuances can come later.
    state: Rc<RefCell<State<S>>>,
    /// The current context of this **Draw** instance.
    context: Context<S>,
}

/// The current **Transform**, alpha **BlendDescriptor** and **Scissor** of a **Draw** instance.
#[derive(Clone, Debug, PartialEq)]
pub struct Context<S = geom::scalar::Default> {
    pub transform: Matrix4<S>,
    pub alpha_blend: wgpu::BlendDescriptor,
    pub color_blend: wgpu::BlendDescriptor,
    pub scissor: Scissor<S>,
    pub topology: wgpu::PrimitiveTopology,
    pub sampler: wgpu::SamplerDescriptor,
}

/// Commands generated by drawings.
///
/// During rendering, the list of **DrawCommand**s are converted into a list of **RenderCommands**
/// that are directly associated with encodable render pass commands.
#[derive(Clone, Debug)]
pub enum DrawCommand<S = geom::scalar::Default> {
    /// Draw a primitive.
    Primitive(Primitive<S>),
    /// A change in the rendering context occurred.
    Context(Context<S>),
}

/// The scissor for a **Draw**'s render context.
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum Scissor<S = geom::scalar::Default> {
    /// The extent of the scissor matches the bounds of the target texture.
    Full,
    /// Crop the view to the given rect.
    Rect(geom::Rect<S>),
    /// The scissor has no overlap with the previous window, resulting in nothing to draw.
    NoOverlap,
}

/// The inner state of the **Draw** type.
///
/// The **Draw** type stores its **State** behind a **RefCell** - a type used for moving mutability
/// checks from compile time to runtime. We do this in order to avoid requiring a `mut` handle to a
/// `draw`. The primary purpose of a **Draw** is to be an easy-as-possible, high-level API for
/// drawing stuff. In order to be friendlier to new users, we want to avoid requiring them to think
/// about mutability and instead focus on creativity. Rust-lang nuances can come later.
#[derive(Clone, Debug)]
pub struct State<S = geom::scalar::Default>
where
    S: BaseFloat,
{
    /// The last context used to draw an image, used to detect changes and emit commands for them.
    last_draw_context: Option<Context<S>>,
    /// If `Some`, the **Draw** should first clear the frame's texture with the given color.
    background_color: Option<properties::LinSrgba>,
    /// Primitives that are in the process of being drawn.
    ///
    /// Keys are indices into the `draw_commands` Vec.
    drawing: HashMap<usize, Primitive<S>>,
    /// The list of recorded draw commands.
    ///
    /// An element may be `None` if it is a primitive in the process of being drawn.
    draw_commands: Vec<Option<DrawCommand<S>>>,
    /// State made accessible via the `DrawingContext`.
    intermediary_state: RefCell<IntermediaryState<S>>,
    /// The theme containing default values.
    theme: Theme,
}

/// State made accessible via the `DrawingContext`.
#[derive(Clone, Debug)]
pub struct IntermediaryState<S> {
    /// Buffers of vertex data that may be re-used for paths, meshes, etc between view calls.
    intermediary_mesh: Mesh<S>,
    /// A re-usable buffer for collecting path events.
    path_event_buffer: Vec<PathEvent>,
    /// A re-usable buffer for collecting colored polyline points.
    path_points_colored_buffer: Vec<(Point2<S>, Color)>,
    /// A re-usable buffer for collecting textured polyline points.
    path_points_textured_buffer: Vec<(Point2<S>, Point2<S>)>,
    /// A buffer containing all text.
    text_buffer: String,
}

impl<S> IntermediaryState<S> {
    pub fn reset(&mut self) {
        self.intermediary_mesh.clear();
        self.path_event_buffer.clear();
        self.path_points_colored_buffer.clear();
        self.path_points_textured_buffer.clear();
        self.text_buffer.clear();
    }
}

impl<S> State<S>
where
    S: BaseFloat,
{
    // Resets all state within the `Draw` instance.
    fn reset(&mut self) {
        self.background_color = None;
        self.last_draw_context = None;
        self.drawing.clear();
        self.draw_commands.clear();
        self.intermediary_state.borrow_mut().reset();
    }

    // Drain any remaining `drawing`s and insert them as draw commands.
    fn finish_remaining_drawings(&mut self) {
        let mut drawing = mem::replace(&mut self.drawing, Default::default());
        for (index, primitive) in drawing.drain() {
            self.insert_draw_command(index, primitive);
        }
        mem::swap(&mut self.drawing, &mut drawing);
    }

    // Finish the drawing at the given node index if it is not yet complete.
    pub(crate) fn finish_drawing(&mut self, index: usize) {
        if let Some(primitive) = self.drawing.remove(&index) {
            self.insert_draw_command(index, primitive);
        }
    }

    // Insert the draw primitive command at the given index.
    fn insert_draw_command(&mut self, index: usize, prim: Primitive<S>) {
        if let Some(elem) = self.draw_commands.get_mut(index) {
            *elem = Some(DrawCommand::Primitive(prim));
        }
    }
}

impl<S> Draw<S>
where
    S: BaseFloat,
{
    /// Create a new **Draw** instance.
    ///
    /// This is the same as calling **Draw::default**.
    pub fn new() -> Self {
        Self::default()
    }

    /// Resets all state within the `Draw` instance.
    pub fn reset(&self) {
        self.state.borrow_mut().reset();
    }

    // Context changes.

    /// Produce a new **Draw** instance transformed by the given transform matrix.
    ///
    /// The resulting **Draw** instance will be have a transform equal to the new transform applied
    /// to the existing transform.
    pub fn transform(&self, transform_matrix: Matrix4<S>) -> Self {
        let mut context = self.context.clone();
        context.transform = context.transform * transform_matrix;
        self.context(context)
    }

    /// Translate the position of the origin by the given translation vector.
    pub fn translate(&self, v: geom::Vector3<S>) -> Self {
        self.transform(Matrix4::from_translation(v.into()))
    }

    /// Translate the position of the origin by the given translation vector.
    ///
    /// This method is short for `translate`.
    pub fn xyz(&self, v: geom::Vector3<S>) -> Self {
        self.translate(v)
    }

    /// Translate the position of the origin by the given translation vector.
    pub fn xy(&self, v: geom::Vector2<S>) -> Self {
        self.xyz(v.into())
    }

    /// Translate the position of the origin by the given amount across each axis.
    pub fn x_y_z(&self, x: S, y: S, z: S) -> Self {
        self.xyz([x, y, z].into())
    }

    /// Translate the position of the origin by the given amount across each axis.
    pub fn x_y(&self, x: S, y: S) -> Self {
        self.xy([x, y].into())
    }

    /// Translate the position of the origin along the x axis.
    pub fn x(&self, x: S) -> Self {
        self.x_y(x, S::zero())
    }

    /// Translate the position of the origin along the y axis.
    pub fn y(&self, y: S) -> Self {
        self.x_y(S::zero(), y)
    }

    /// Translate the position of the origin along the z axis.
    pub fn z(&self, z: S) -> Self {
        self.x_y_z(S::zero(), S::zero(), z)
    }

    /// Produce a new **Draw** instance where the contents are scaled uniformly by the given value.
    pub fn scale(&self, s: S) -> Self {
        self.scale_axes(geom::vec3(s, s, s))
    }

    /// Produce a new **Draw** instance where the contents are scaled by the given amount across
    /// each axis.
    pub fn scale_axes(&self, v: geom::Vector3<S>) -> Self {
        self.transform(Matrix4::from_nonuniform_scale(v.x, v.y, v.z))
    }

    /// Produce a new **Draw** instance where the contents are scaled by the given amount along the
    /// x axis
    pub fn scale_x(&self, s: S) -> Self {
        self.scale_axes(geom::vec3(s, S::zero(), S::zero()))
    }

    /// Produce a new **Draw** instance where the contents are scaled by the given amount along the
    /// y axis
    pub fn scale_y(&self, s: S) -> Self {
        self.scale_axes(geom::vec3(S::zero(), s, S::zero()))
    }

    /// Produce a new **Draw** instance where the contents are scaled by the given amount along the
    /// z axis
    pub fn scale_z(&self, s: S) -> Self {
        self.scale_axes(geom::vec3(S::zero(), S::zero(), s))
    }

    /// The given vector is interpreted as a Euler angle in radians and a transform is applied
    /// accordingly.
    pub fn euler(&self, euler: cgmath::Euler<cgmath::Rad<S>>) -> Self {
        self.transform(euler.into())
    }

    /// Specify the orientation with the given **Quaternion**.
    pub fn quaternion(&self, q: cgmath::Quaternion<S>) -> Self {
        self.transform(q.into())
    }

    /// Specify the orientation along each axis with the given **Vector** of radians.
    ///
    /// This currently has the same affect as calling `euler`.
    pub fn radians(&self, v: geom::Vector3<S>) -> Self {
        let euler = cgmath::Euler {
            x: cgmath::Rad(v.x),
            y: cgmath::Rad(v.y),
            z: cgmath::Rad(v.z),
        };
        self.euler(euler)
    }

    /// Specify the orientation around the *x* axis in radians.
    pub fn x_radians(&self, x: S) -> Self {
        self.radians(geom::vec3(x, S::zero(), S::zero()))
    }

    /// Specify the orientation around the *y* axis in radians.
    pub fn y_radians(&self, y: S) -> Self {
        self.radians(geom::vec3(S::zero(), y, S::zero()))
    }

    /// Specify the orientation around the *z* axis in radians.
    pub fn z_radians(&self, z: S) -> Self {
        self.radians(geom::vec3(S::zero(), S::zero(), z))
    }

    /// Specify the orientation along each axis with the given **Vector** of degrees.
    pub fn degrees(&self, v: geom::Vector3<S>) -> Self {
        self.radians(geom::vec3(
            deg_to_rad(v.x),
            deg_to_rad(v.y),
            deg_to_rad(v.z),
        ))
    }

    /// Specify the orientation around the *x* axis in degrees.
    pub fn x_degrees(&self, x: S) -> Self {
        self.x_radians(deg_to_rad(x))
    }

    /// Specify the orientation around the *y* axis in degrees.
    pub fn y_degrees(&self, y: S) -> Self {
        self.y_radians(deg_to_rad(y))
    }

    /// Specify the orientation around the *z* axis in degrees.
    pub fn z_degrees(&self, z: S) -> Self {
        self.z_radians(deg_to_rad(z))
    }

    /// Specify the orientation along each axis with the given **Vector** of degrees.
    pub fn turns(&self, v: geom::Vector3<S>) -> Self {
        self.radians(geom::vec3(
            turns_to_rad(v.x),
            turns_to_rad(v.y),
            turns_to_rad(v.z),
        ))
    }

    /// Specify the orientation around the *x* axis as a number of turns around the axis.
    pub fn x_turns(&self, x: S) -> Self {
        self.x_radians(turns_to_rad(x))
    }

    /// Specify the orientation around the *y* axis as a number of turns around the axis.
    pub fn y_turns(&self, y: S) -> Self {
        self.y_radians(turns_to_rad(y))
    }

    /// Specify the orientation around the *z* axis as a number of turns around the axis.
    pub fn z_turns(&self, z: S) -> Self {
        self.z_radians(turns_to_rad(z))
    }

    /// Specify the "pitch" of the orientation in radians.
    ///
    /// This has the same effect as calling `x_radians`.
    pub fn pitch(&self, pitch: S) -> Self {
        self.x_radians(pitch)
    }

    /// Specify the "yaw" of the orientation in radians.
    ///
    /// This has the same effect as calling `y_radians`.
    pub fn yaw(&self, yaw: S) -> Self {
        self.y_radians(yaw)
    }

    /// Specify the "roll" of the orientation in radians.
    ///
    /// This has the same effect as calling `z_radians`.
    pub fn roll(&self, roll: S) -> Self {
        self.z_radians(roll)
    }

    /// Assuming we're looking at a 2D plane, positive values cause a clockwise rotation where the
    /// given value is specified in radians.
    ///
    /// This is equivalent to calling the `z_radians` or `roll` methods.
    pub fn rotate(&self, radians: S) -> Self {
        self.z_radians(radians)
    }

    /// Produce a new **Draw** instance that will draw with the given alpha blend descriptor.
    pub fn alpha_blend(&self, blend_descriptor: wgpu::BlendDescriptor) -> Self {
        let mut context = self.context.clone();
        context.alpha_blend = blend_descriptor;
        self.context(context)
    }

    /// Produce a new **Draw** instance that will draw with the given color blend descriptor.
    pub fn color_blend(&self, blend_descriptor: wgpu::BlendDescriptor) -> Self {
        let mut context = self.context.clone();
        context.color_blend = blend_descriptor;
        self.context(context)
    }

    /// Short-hand for `color_blend`, the common use-case.
    pub fn blend(&self, blend_descriptor: wgpu::BlendDescriptor) -> Self {
        self.color_blend(blend_descriptor)
    }

    /// Produce a new **Draw** instance that will be cropped to the given rectangle.
    ///
    /// If the current **Draw** instance already contains a scissor, the result will be the overlap
    /// between the original scissor and the new one.
    pub fn scissor(&self, scissor: geom::Rect<S>) -> Self {
        let mut context = self.context.clone();
        context.scissor = match context.scissor {
            Scissor::Full => Scissor::Rect(scissor),
            Scissor::Rect(rect) => rect
                .overlap(scissor)
                .map(Scissor::Rect)
                .unwrap_or(Scissor::NoOverlap),
            Scissor::NoOverlap => Scissor::NoOverlap,
        };
        self.context(context)
    }

    /// Produce a new **Draw** instance.
    ///
    /// All drawing that occurs on the new instance will be rendered as a "wireframe" between all
    /// vertices.
    ///
    /// This will cause the **draw::Renderer** to switch render pipelines in order to use the
    /// **LineList** primitive topology. The switch will only occur if this topology was not
    /// already enabled.
    pub fn line_mode(&self) -> Self {
        self.primitive_topology(wgpu::PrimitiveTopology::LineList)
    }

    /// Produce a new **Draw** instance.
    ///
    /// All drawing that occurs on the new instance will be rendered as points on the vertices.
    ///
    /// This will cause the **draw::Renderer** to switch render pipelines in order to use the
    /// **PointList** primitive topology. The switch will only occur if this topology was not
    /// already enabled.
    pub fn point_mode(&self) -> Self {
        self.primitive_topology(wgpu::PrimitiveTopology::PointList)
    }

    /// Produce a new **Draw** instance.
    ///
    /// All drawing that occurs on the new instance will be rendered as points on the vertices.
    ///
    /// This will cause the **draw::Renderer** to switch render pipelines in order to use the
    /// **PointList** primitive topology. The switch will only occur if this topology was not
    /// already enabled.
    ///
    /// This is the default primitive topology mode.
    pub fn triangle_mode(&self) -> Self {
        self.primitive_topology(wgpu::PrimitiveTopology::TriangleList)
    }

    /// Produce a new **Draw** instance where all textures and textured vertices drawn will be
    /// sampled via a sampler of the given descriptor.
    pub fn sampler(&self, desc: wgpu::SamplerDescriptor) -> Self {
        let mut context = self.context.clone();
        context.sampler = desc;
        self.context(context)
    }

    /// Specify the primitive topology to use within the render pipeline.
    ///
    /// This method is shared between the `line_mode`, `point_mode` and `triangle_mode` methods.
    fn primitive_topology(&self, topology: wgpu::PrimitiveTopology) -> Self {
        let mut context = self.context.clone();
        context.topology = topology;
        self.context(context)
    }

    /// Produce a new **Draw** instance with the given context.
    fn context(&self, context: Context<S>) -> Self {
        let state = self.state.clone();
        Draw { state, context }
    }

    // Primitives.

    /// Specify a color with which the background should be cleared.
    pub fn background(&self) -> Background<S> {
        background::new(self)
    }

    /// Add the given type to be drawn.
    pub fn a<T>(&self, primitive: T) -> Drawing<T, S>
    where
        T: Into<Primitive<S>>,
        Primitive<S>: Into<Option<T>>,
    {
        let index = {
            let mut state = self.state.borrow_mut();
            // If drawing with a different context, insert the necessary command to update it.
            if state.last_draw_context.as_ref() != Some(&self.context) {
                state
                    .draw_commands
                    .push(Some(DrawCommand::Context(self.context.clone())));
                state.last_draw_context = Some(self.context.clone());
            }
            // The primitive will be inserted in the next element.
            let index = state.draw_commands.len();
            let primitive: Primitive<S> = primitive.into();
            state.draw_commands.push(None);
            state.drawing.insert(index, primitive);
            index
        };
        drawing::new(self, index)
    }

    /// Begin drawing a **Path**.
    pub fn path(&self) -> Drawing<primitive::PathInit<S>, S> {
        self.a(Default::default())
    }

    /// Begin drawing an **Ellipse**.
    pub fn ellipse(&self) -> Drawing<primitive::Ellipse<S>, S> {
        self.a(Default::default())
    }

    /// Begin drawing a **Line**.
    pub fn line(&self) -> Drawing<primitive::Line<S>, S> {
        self.a(Default::default())
    }

    /// Begin drawing an **Arrow**.
    pub fn arrow(&self) -> Drawing<primitive::Arrow<S>, S> {
        self.a(Default::default())
    }

    /// Begin drawing a **Quad**.
    pub fn quad(&self) -> Drawing<primitive::Quad<S>, S> {
        self.a(Default::default())
    }

    /// Begin drawing a **Rect**.
    pub fn rect(&self) -> Drawing<primitive::Rect<S>, S> {
        self.a(Default::default())
    }

    /// Begin drawing a **Triangle**.
    pub fn tri(&self) -> Drawing<primitive::Tri<S>, S> {
        self.a(Default::default())
    }

    /// Begin drawing a **Polygon**.
    pub fn polygon(&self) -> Drawing<primitive::PolygonInit<S>, S> {
        self.a(Default::default())
    }

    /// Begin drawing a **Mesh**.
    pub fn mesh(&self) -> Drawing<primitive::mesh::Vertexless, S> {
        self.a(Default::default())
    }

    /// Begin drawing a **Polyline**.
    ///
    /// Note that this is simply short-hand for `draw.path().stroke()`
    pub fn polyline(&self) -> Drawing<primitive::PathStroke<S>, S> {
        self.path().stroke()
    }

    /// Begin drawing a **Text**.
    pub fn text(&self, s: &str) -> Drawing<primitive::Text<S>, S> {
        let text = {
            let state = self.state.borrow();
            let mut intermediary_state = state.intermediary_state.borrow_mut();
            let ctxt = DrawingContext::from_intermediary_state(&mut *intermediary_state);
            primitive::text::Text::new(ctxt, s)
        };
        self.a(text)
    }

    /// Begin drawing a **Texture**.
    pub fn texture(&self, view: &dyn wgpu::ToTextureView) -> Drawing<primitive::Texture<S>, S> {
        self.a(primitive::Texture::new(view))
    }

    /// Finish any drawings-in-progress and produce an iterator draining the inner draw commands
    /// and yielding them by value.
    pub fn drain_commands(&self) -> impl Iterator<Item = DrawCommand<S>> {
        self.finish_remaining_drawings();
        let cmds = {
            let mut state = self.state.borrow_mut();
            let empty = Vec::with_capacity(state.draw_commands.len());
            std::mem::replace(&mut state.draw_commands, empty)
        };
        cmds.into_iter().filter_map(|opt| opt)
    }

    /// Drain any remaining `drawing`s and convert them to draw commands.
    pub fn finish_remaining_drawings(&self) {
        self.state.borrow_mut().finish_remaining_drawings()
    }
}

impl<S> Default for IntermediaryState<S> {
    fn default() -> Self {
        let intermediary_mesh = Default::default();
        let path_event_buffer = Default::default();
        let path_points_colored_buffer = Default::default();
        let path_points_textured_buffer = Default::default();
        let text_buffer = Default::default();
        IntermediaryState {
            intermediary_mesh,
            path_event_buffer,
            path_points_colored_buffer,
            path_points_textured_buffer,
            text_buffer,
        }
    }
}

impl<S> Default for State<S>
where
    S: BaseFloat,
{
    fn default() -> Self {
        let last_draw_context = None;
        let background_color = Default::default();
        let draw_commands = Default::default();
        let drawing = Default::default();
        let intermediary_state = RefCell::new(Default::default());
        let theme = Default::default();
        State {
            last_draw_context,
            draw_commands,
            drawing,
            intermediary_state,
            theme,
            background_color,
        }
    }
}

impl<S> Default for Draw<S>
where
    S: BaseFloat,
{
    fn default() -> Self {
        let state: Rc<RefCell<State<S>>> = Rc::new(RefCell::new(Default::default()));
        let context = Default::default();
        Draw { state, context }
    }
}

impl<S> Default for Context<S>
where
    S: BaseFloat,
{
    fn default() -> Self {
        Self {
            transform: Matrix4::identity(),
            alpha_blend: wgpu::RenderPipelineBuilder::DEFAULT_ALPHA_BLEND,
            color_blend: wgpu::RenderPipelineBuilder::DEFAULT_COLOR_BLEND,
            scissor: Scissor::Full,
            topology: wgpu::RenderPipelineBuilder::DEFAULT_PRIMITIVE_TOPOLOGY,
            sampler: wgpu::SamplerBuilder::new().into_descriptor(),
        }
    }
}