1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
//! [`FillRule`] controls the area of path filling.

/// FillRule Trait
pub trait FillRule: Copy {
    fn apply(&self, value: f64) -> f64;
    fn is_inverse(&self) -> bool;
}

/// NonZero fills the overlapping part of the path
#[derive(Clone, Copy, Default)]
pub struct NonZero;

impl FillRule for NonZero {
    fn apply(&self, value: f64) -> f64 {
        value.abs().min(1.0)
    }

    fn is_inverse(&self) -> bool {
        false
    }
}

/// EvenOdd fills only the odd overlap of the path
#[derive(Clone, Copy, Default)]
pub struct EvenOdd;

impl FillRule for EvenOdd {
    fn apply(&self, value: f64) -> f64 {
        1.0 - (value.rem_euclid(2.0) - 1.0).abs()
    }

    fn is_inverse(&self) -> bool {
        false
    }
}

/// Negative of [`NonZero`]
#[derive(Clone, Copy, Default)]
pub struct InverseNonZero;

impl FillRule for InverseNonZero {
    fn apply(&self, value: f64) -> f64 {
        1.0 - value.abs().min(1.0)
    }

    fn is_inverse(&self) -> bool {
        true
    }
}

/// Negative of [`EvenOdd`]
#[derive(Clone, Copy, Default)]
pub struct InverseEvenOdd;

impl FillRule for InverseEvenOdd {
    fn apply(&self, value: f64) -> f64 {
        (value.rem_euclid(2.0) - 1.0).abs()
    }

    fn is_inverse(&self) -> bool {
        true
    }
}

#[derive(Clone, Copy, Default)]
pub struct Abs;

impl FillRule for Abs {
    fn apply(&self, value: f64) -> f64 {
        value.abs()
    }

    fn is_inverse(&self) -> bool {
        false
    }
}

#[derive(Clone, Copy, Default)]
pub struct Raw;

impl FillRule for Raw {
    fn apply(&self, value: f64) -> f64 {
        value
    }

    fn is_inverse(&self) -> bool {
        false
    }
}

#[test]
fn test() {
    assert!((NonZero.apply(0.0) - 0.0).abs() < 0.000001);
    assert!((NonZero.apply(0.6) - 0.6).abs() < 0.000001);
    assert!((NonZero.apply(1.0) - 1.0).abs() < 0.000001);
    assert!((NonZero.apply(1.2) - 1.0).abs() < 0.000001);
    assert!((NonZero.apply(-1.0) - 1.0).abs() < 0.000001);
    assert!((NonZero.apply(-1.2) - 1.0).abs() < 0.000001);

    assert!((EvenOdd.apply(0.0) - 0.0).abs() < 0.000001);
    assert!((EvenOdd.apply(0.6) - 0.6).abs() < 0.000001);
    assert!((EvenOdd.apply(1.0) - 1.0).abs() < 0.000001);
    assert!((EvenOdd.apply(1.2) - 0.8).abs() < 0.000001);
    assert!((EvenOdd.apply(-1.0) - 1.0).abs() < 0.000001);
    assert!((EvenOdd.apply(-1.2) - 0.8).abs() < 0.000001);

    assert!((InverseNonZero.apply(0.0) - 1.0).abs() < 0.000001);
    assert!((InverseNonZero.apply(0.6) - 0.4).abs() < 0.000001);
    assert!((InverseNonZero.apply(1.0) - 0.0).abs() < 0.000001);
    assert!((InverseNonZero.apply(1.2) - 0.0).abs() < 0.000001);
    assert!((InverseNonZero.apply(-1.0) - 0.0).abs() < 0.000001);
    assert!((InverseNonZero.apply(-1.2) - 0.0).abs() < 0.000001);

    assert!((InverseEvenOdd.apply(0.0) - 1.0).abs() < 0.000001);
    assert!((InverseEvenOdd.apply(0.6) - 0.4).abs() < 0.000001);
    assert!((InverseEvenOdd.apply(1.0) - 0.0).abs() < 0.000001);
    assert!((InverseEvenOdd.apply(1.2) - 0.2).abs() < 0.000001);
    assert!((InverseEvenOdd.apply(-1.0) - 0.0).abs() < 0.000001);
    assert!((InverseEvenOdd.apply(-1.2) - 0.2).abs() < 0.000001);
}