1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
use num::{One, Zero};
use simba::scalar::{ClosedAdd, ClosedMul};
use std::ops::{Add, Mul};

use crate::allocator::Allocator;
use crate::constraint::{AreMultipliable, DimEq, ShapeConstraint};
use crate::sparse::{CsMatrix, CsStorage, CsStorageMut, CsVector};
use crate::storage::StorageMut;
use crate::{Const, DefaultAllocator, Dim, Matrix, OVector, Scalar, Vector};

impl<T: Scalar, R: Dim, C: Dim, S: CsStorage<T, R, C>> CsMatrix<T, R, C, S> {
    fn scatter<R2: Dim, C2: Dim>(
        &self,
        j: usize,
        beta: T,
        timestamps: &mut [usize],
        timestamp: usize,
        workspace: &mut [T],
        mut nz: usize,
        res: &mut CsMatrix<T, R2, C2>,
    ) -> usize
    where
        T: ClosedAdd + ClosedMul,
        DefaultAllocator: Allocator<usize, C2>,
    {
        for (i, val) in self.data.column_entries(j) {
            if timestamps[i] < timestamp {
                timestamps[i] = timestamp;
                res.data.i[nz] = i;
                nz += 1;
                workspace[i] = val * beta.clone();
            } else {
                workspace[i] += val * beta.clone();
            }
        }

        nz
    }
}

/*
impl<T: Scalar, R, S> CsVector<T, R, S> {
    pub fn axpy(&mut self, alpha: T, x: CsVector<T, R, S>, beta: T) {
        // First, compute the number of non-zero entries.
        let mut nnzero = 0;

        // Allocate a size large enough.
        self.data.set_column_len(0, nnzero);

        // Fill with the axpy.
        let mut i = self.len();
        let mut j = x.len();
        let mut k = nnzero - 1;
        let mut rid1 = self.data.row_index(0, i - 1);
        let mut rid2 = x.data.row_index(0, j - 1);

        while k > 0 {
            if rid1 == rid2 {
                self.data.set_row_index(0, k, rid1);
                self[k] = alpha * x[j] + beta * self[k];
                i -= 1;
                j -= 1;
            } else if rid1 < rid2 {
                self.data.set_row_index(0, k, rid1);
                self[k] = beta * self[i];
                i -= 1;
            } else {
                self.data.set_row_index(0, k, rid2);
                self[k] = alpha * x[j];
                j -= 1;
            }

            k -= 1;
        }
    }
}
*/

impl<T: Scalar + Zero + ClosedAdd + ClosedMul, D: Dim, S: StorageMut<T, D>> Vector<T, D, S> {
    /// Perform a sparse axpy operation: `self = alpha * x + beta * self` operation.
    pub fn axpy_cs<D2: Dim, S2>(&mut self, alpha: T, x: &CsVector<T, D2, S2>, beta: T)
    where
        S2: CsStorage<T, D2>,
        ShapeConstraint: DimEq<D, D2>,
    {
        if beta.is_zero() {
            for i in 0..x.len() {
                unsafe {
                    let k = x.data.row_index_unchecked(i);
                    let y = self.vget_unchecked_mut(k);
                    *y = alpha.clone() * x.data.get_value_unchecked(i).clone();
                }
            }
        } else {
            // Needed to be sure even components not present on `x` are multiplied.
            *self *= beta.clone();

            for i in 0..x.len() {
                unsafe {
                    let k = x.data.row_index_unchecked(i);
                    let y = self.vget_unchecked_mut(k);
                    *y += alpha.clone() * x.data.get_value_unchecked(i).clone();
                }
            }
        }
    }

    /*
    pub fn gemv_sparse<R2: Dim, C2: Dim, S2>(&mut self, alpha: T, a: &CsMatrix<T, R2, C2, S2>, x: &DVector<T>, beta: T)
        where
            S2: CsStorage<T, R2, C2> {
        let col2 = a.column(0);
        let val = unsafe { *x.vget_unchecked(0) };
        self.axpy_sparse(alpha * val, &col2, beta);

        for j in 1..ncols2 {
            let col2 = a.column(j);
            let val = unsafe { *x.vget_unchecked(j) };

            self.axpy_sparse(alpha * val, &col2, T::one());
        }
    }
    */
}

impl<'a, 'b, T, R1, R2, C1, C2, S1, S2> Mul<&'b CsMatrix<T, R2, C2, S2>>
    for &'a CsMatrix<T, R1, C1, S1>
where
    T: Scalar + ClosedAdd + ClosedMul + Zero,
    R1: Dim,
    C1: Dim,
    R2: Dim,
    C2: Dim,
    S1: CsStorage<T, R1, C1>,
    S2: CsStorage<T, R2, C2>,
    ShapeConstraint: AreMultipliable<R1, C1, R2, C2>,
    DefaultAllocator: Allocator<usize, C2> + Allocator<usize, R1> + Allocator<T, R1>,
{
    type Output = CsMatrix<T, R1, C2>;

    fn mul(self, rhs: &'b CsMatrix<T, R2, C2, S2>) -> Self::Output {
        let (nrows1, ncols1) = self.data.shape();
        let (nrows2, ncols2) = rhs.data.shape();
        assert_eq!(
            ncols1.value(),
            nrows2.value(),
            "Mismatched dimensions for matrix multiplication."
        );

        let mut res = CsMatrix::new_uninitialized_generic(nrows1, ncols2, self.len() + rhs.len());
        let mut workspace = OVector::<T, R1>::zeros_generic(nrows1, Const::<1>);
        let mut nz = 0;

        for j in 0..ncols2.value() {
            res.data.p[j] = nz;
            let new_size_bound = nz + nrows1.value();
            res.data.i.resize(new_size_bound, 0);
            res.data.vals.resize(new_size_bound, T::zero());

            for (i, beta) in rhs.data.column_entries(j) {
                for (k, val) in self.data.column_entries(i) {
                    workspace[k] += val.clone() * beta.clone();
                }
            }

            for (i, val) in workspace.as_mut_slice().iter_mut().enumerate() {
                if !val.is_zero() {
                    res.data.i[nz] = i;
                    res.data.vals[nz] = val.clone();
                    *val = T::zero();
                    nz += 1;
                }
            }
        }

        // NOTE: the following has a lower complexity, but is slower in many cases, likely because
        // of branching inside of the inner loop.
        //
        // let mut res = CsMatrix::new_uninitialized_generic(nrows1, ncols2, self.len() + rhs.len());
        // let mut timestamps = OVector::zeros_generic(nrows1, Const::<)>;
        // let mut workspace = unsafe { OVector::new_uninitialized_generic(nrows1, Const::<)> };
        // let mut nz = 0;
        //
        // for j in 0..ncols2.value() {
        //     res.data.p[j] = nz;
        //     let new_size_bound = nz + nrows1.value();
        //     res.data.i.resize(new_size_bound, 0);
        //     res.data.vals.resize(new_size_bound, T::zero());
        //
        //     for (i, val) in rhs.data.column_entries(j) {
        //         nz = self.scatter(
        //             i,
        //             val,
        //             timestamps.as_mut_slice(),
        //             j + 1,
        //             workspace.as_mut_slice(),
        //             nz,
        //             &mut res,
        //         );
        //     }
        //
        //     // Keep the output sorted.
        //     let range = res.data.p[j]..nz;
        //     res.data.i[range.clone()].sort();
        //
        //     for p in range {
        //         res.data.vals[p] = workspace[res.data.i[p]]
        //     }
        // }

        res.data.i.truncate(nz);
        res.data.i.shrink_to_fit();
        res.data.vals.truncate(nz);
        res.data.vals.shrink_to_fit();
        res
    }
}

impl<'a, 'b, T, R1, R2, C1, C2, S1, S2> Add<&'b CsMatrix<T, R2, C2, S2>>
    for &'a CsMatrix<T, R1, C1, S1>
where
    T: Scalar + ClosedAdd + ClosedMul + Zero + One,
    R1: Dim,
    C1: Dim,
    R2: Dim,
    C2: Dim,
    S1: CsStorage<T, R1, C1>,
    S2: CsStorage<T, R2, C2>,
    ShapeConstraint: DimEq<R1, R2> + DimEq<C1, C2>,
    DefaultAllocator: Allocator<usize, C2> + Allocator<usize, R1> + Allocator<T, R1>,
{
    type Output = CsMatrix<T, R1, C2>;

    fn add(self, rhs: &'b CsMatrix<T, R2, C2, S2>) -> Self::Output {
        let (nrows1, ncols1) = self.data.shape();
        let (nrows2, ncols2) = rhs.data.shape();
        assert_eq!(
            (nrows1.value(), ncols1.value()),
            (nrows2.value(), ncols2.value()),
            "Mismatched dimensions for matrix sum."
        );

        let mut res = CsMatrix::new_uninitialized_generic(nrows1, ncols2, self.len() + rhs.len());
        let mut timestamps = OVector::zeros_generic(nrows1, Const::<1>);
        let mut workspace = Matrix::zeros_generic(nrows1, Const::<1>);
        let mut nz = 0;

        for j in 0..ncols2.value() {
            res.data.p[j] = nz;

            nz = self.scatter(
                j,
                T::one(),
                timestamps.as_mut_slice(),
                j + 1,
                workspace.as_mut_slice(),
                nz,
                &mut res,
            );

            nz = rhs.scatter(
                j,
                T::one(),
                timestamps.as_mut_slice(),
                j + 1,
                workspace.as_mut_slice(),
                nz,
                &mut res,
            );

            // Keep the output sorted.
            let range = res.data.p[j]..nz;
            res.data.i[range.clone()].sort_unstable();

            for p in range {
                res.data.vals[p] = workspace[res.data.i[p]].clone()
            }
        }

        res.data.i.truncate(nz);
        res.data.i.shrink_to_fit();
        res.data.vals.truncate(nz);
        res.data.vals.shrink_to_fit();
        res
    }
}

impl<'a, 'b, T, R, C, S> Mul<T> for CsMatrix<T, R, C, S>
where
    T: Scalar + ClosedAdd + ClosedMul + Zero,
    R: Dim,
    C: Dim,
    S: CsStorageMut<T, R, C>,
{
    type Output = Self;

    fn mul(mut self, rhs: T) -> Self::Output {
        for e in self.values_mut() {
            *e *= rhs.clone()
        }

        self
    }
}