1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
//! Traits giving structural informations on linear algebra objects or the space they live in.

use std::{f32, f64, i8, i16, i32, i64, u8, u16, u32, u64, isize, usize};
use std::slice::{Iter, IterMut};
use std::ops::{Add, Sub, Mul, Div, Rem, Index, IndexMut, Neg};
use num::{Float, Zero, One};
use traits::operations::{Axpy, Transpose, Inv, Absolute};
use traits::geometry::{Dot, Norm, Orig};

/// Basic integral numeric trait.
pub trait BaseNum: Copy + Zero + One +
                   Add<Self, Output = Self> + Sub<Self, Output = Self> +
                   Mul<Self, Output = Self> + Div<Self, Output = Self> +
                   Rem<Self, Output = Self> + PartialEq +
                   Absolute<Self> + Axpy<Self> {
}

/// Basic floating-point number numeric trait.
pub trait BaseFloat: Float + Cast<f64> + BaseNum + Neg {
    /// Archimedes' constant.
    fn pi() -> Self;
    /// 2.0 * pi.
    fn two_pi() -> Self;
    /// pi / 2.0.
    fn frac_pi_2() -> Self;
    /// pi / 3.0.
    fn frac_pi_3() -> Self;
    /// pi / 4.0.
    fn frac_pi_4() -> Self;
    /// pi / 6.0.
    fn frac_pi_6() -> Self;
    /// pi / 8.0.
    fn frac_pi_8() -> Self;
    /// 1.0 / pi.
    fn frac_1_pi() -> Self;
    /// 2.0 / pi.
    fn frac_2_pi() -> Self;
    /// 2.0 / sqrt(pi).
    fn frac_2_sqrt_pi() -> Self;

    /// Euler's number.
    fn e() -> Self;
    /// log2(e).
    fn log2_e() -> Self;
    /// log10(e).
    fn log10_e() -> Self;
    /// ln(2.0).
    fn ln_2() -> Self;
    /// ln(10.0).
    fn ln_10() -> Self;
}

/// Traits of objects which can be created from an object of type `T`.
pub trait Cast<T> {
    /// Converts an element of type `T` to an element of type `Self`.
    fn from(t: T) -> Self;
}

/// Trait of matrices.
///
/// A matrix has rows and columns and are able to multiply them.
pub trait Mat<N, R, C: Mul<Self, Output = R>>: Sized +
                                               Row<R> + Col<C> + Mul<R, Output = C> +
                                               Index<(usize, usize), Output = N>
{ }

impl<N, M, R, C> Mat<N, R, C> for M
    where M: Row<R> + Col<C> + Mul<R, Output = C> + Index<(usize, usize), Output = N>,
          C: Mul<M, Output = R>,
{ }

/// Trait implemented by square matrices.
pub trait SquareMat<N, V: Mul<Self, Output = V>>: Mat<N, V, V> +
                                                  Mul<Self, Output = Self> +
                                                  Eye + Transpose + Diag<V> + Inv + Dim + One {
}

impl<N, V, M> SquareMat<N, V> for M
    where M: Mat<N, V, V> + Mul<M, Output = M> + Eye + Transpose + Diag<V> + Inv + Dim + One,
          V: Mul<M, Output = V> {
}

/// Trait for constructing the identity matrix
pub trait Eye {
    /// Return the identity matrix of specified dimension
    fn new_identity(dim: usize) -> Self;
}

/// Trait for constructiong an object repeating a value.
pub trait Repeat<N> {
    /// Returns a value with filled by `val`.
    fn repeat(val: N) -> Self;
}

/// Types that have maximum and minimum value.
pub trait Bounded {
    /// The minimum value.
    #[inline]
    fn min_value() -> Self;
    /// The maximum value.
    #[inline]
    fn max_value() -> Self;
}

// FIXME: return an iterator instead
/// Traits of objects which can form a basis (typically vectors).
pub trait Basis: Sized {
    /// Iterates through the canonical basis of the space in which this object lives.
    fn canonical_basis<F: FnMut(Self) -> bool>(F);

    /// Iterates through a basis of the subspace orthogonal to `self`.
    fn orthonormal_subspace_basis<F: FnMut(Self) -> bool>(&Self, F);

    /// Gets the ith element of the canonical basis.
    fn canonical_basis_element(i: usize) -> Option<Self>;
}

/// Trait to access rows of a matrix or a vector.
pub trait Row<R> {
    /// The number of column of `self`.
    fn nrows(&self) -> usize;
    /// Reads the `i`-th row of `self`.
    fn row(&self, i: usize) -> R;
    /// Writes the `i`-th row of `self`.
    fn set_row(&mut self, i: usize, R);

    // FIXME: add iterators on rows: this could be a very good way to generalize _and_ optimize
    // a lot of operations.
}

/// Trait to access columns of a matrix or vector.
pub trait Col<C> {
    /// The number of column of this matrix or vector.
    fn ncols(&self) -> usize;

    /// Reads the `i`-th column of `self`.
    fn col(&self, i: usize) -> C;

    /// Writes the `i`-th column of `self`.
    fn set_col(&mut self, i: usize, C);

    // FIXME: add iterators on columns: this could be a very good way to generalize _and_ optimize
    // a lot of operations.
}

/// Trait to access part of a column of a matrix
pub trait ColSlice<C> {
    /// Returns a view to a slice of a column of a matrix.
    fn col_slice(&self, col_id: usize, row_start: usize, row_end: usize) -> C;
}

/// Trait to access part of a row of a matrix
pub trait RowSlice<R> {
    /// Returns a view to a slice of a row of a matrix.
    fn row_slice(&self, row_id: usize, col_start: usize, col_end: usize) -> R;
}

/// Trait of objects having a spacial dimension known at compile time.
pub trait Dim: Sized {
    /// The dimension of the object.
    fn dim(unused_mut: Option<Self>) -> usize;
}

/// Trait to get the diagonal of square matrices.
pub trait Diag<V> {
    /// Creates a new matrix with the given diagonal.
    fn from_diag(diag: &V) -> Self;

    /// The diagonal of this matrix.
    fn diag(&self) -> V;
}

/// Trait to set the diagonal of square matrices.
pub trait DiagMut<V>: Diag<V> {
    /// Sets the diagonal of this matrix.
    fn set_diag(&mut self, diag: &V);
}

/// The shape of an indexable object.
pub trait Shape<I>: Index<I> {
    /// Returns the shape of an indexable object.
    fn shape(&self) -> I;
}

/// This is a workaround of current Rust limitations.
///
/// It exists because the `I` trait cannot be used to express write access.
/// Thus, this is the same as the `I` trait but without the syntactic sugar and with a method
/// to write to a specific index.
pub trait Indexable<I, N>: Shape<I> + IndexMut<I, Output = N> {
    /// Swaps the `i`-th element of `self` with its `j`-th element.
    fn swap(&mut self, i: I, j: I);

    /// Reads the `i`-th element of `self`.
    ///
    /// `i` is not checked.
    unsafe fn unsafe_at(&self, i: I) -> N;
    /// Writes to the `i`-th element of `self`.
    ///
    /// `i` is not checked.
    unsafe fn unsafe_set(&mut self, i: I, N);
}

/// This is a workaround of current Rust limitations.
///
/// Traits of objects which can be iterated through like a vector.
pub trait Iterable<N> {
    /// Gets a vector-like read-only iterator.
    fn iter<'l>(&'l self) -> Iter<'l, N>;
}

/// This is a workaround of current Rust limitations.
///
/// Traits of mutable objects which can be iterated through like a vector.
pub trait IterableMut<N> {
    /// Gets a vector-like read-write iterator.
    fn iter_mut<'l>(&'l mut self) -> IterMut<'l, N>;
}

/*
 * Vec related traits.
 */
/// Trait grouping most common operations on vectors.
pub trait NumVec<N>: Dim +
                     Sub<Self, Output = Self> + Add<Self, Output = Self> +
                     Mul<N, Output = Self> + Div<N, Output = Self> + 
                     Index<usize, Output = N> +
                     Zero + PartialEq + Dot<N> + Axpy<N> {
}

/// Trait of vector with components implementing the `BaseFloat` trait.
pub trait FloatVec<N: BaseFloat>: NumVec<N> + Norm<N> + Neg<Output = Self> + Basis {
}

/*
 * Pnt related traits.
 */
/// Trait that relates a point of an affine space to a vector of the associated vector space.
pub trait PntAsVec<V> {
    /// Converts this point to its associated vector.
    fn to_vec(self) -> V;

    /// Converts a reference to this point to a reference to its associated vector.
    fn as_vec<'a>(&'a self) -> &'a V;

    // NOTE: this is used in some places to overcome some limitations untill the trait reform is
    // done on rustc.
    /// Sets the coordinates of this point to match those of a given vector.
    fn set_coords(&mut self, coords: V);
}

/// Trait grouping most common operations on points.
// XXX: the vector space element `V` should be an associated type. Though this would prevent V from
// having bounds (they are not supported yet). So, for now, we will just use a type parameter.
pub trait NumPnt<N, V>:
          Copy +
          PntAsVec<V> +
          Dim +
          Orig +
          PartialEq +
          Axpy<N> +
          Sub<Self, Output = V> +
          Mul<N, Output = Self> +
          Div<N, Output = Self> +
          Add<V, Output = Self> +
          Index<usize, Output = N> { // FIXME: + Sub<V, Self>
}

/// Trait of points with components implementing the `BaseFloat` trait.
pub trait FloatPnt<N: BaseFloat, V: Norm<N>>: NumPnt<N, V> + Sized {
    /// Computes the square distance between two points.
    #[inline]
    fn sqdist(&self, other: &Self) -> N {
        (*self - *other).sqnorm()
    }

    /// Computes the distance between two points.
    #[inline]
    fn dist(&self, other: &Self) -> N {
        (*self - *other).norm()
    }
}

/*
 *
 *
 * Some implementations for builtin types.
 *
 *
 */
// Bounded
macro_rules! impl_bounded(
    ($n: ty, $min: expr, $max: expr) => {
        impl Bounded for $n {
            #[inline]
            fn min_value() -> $n {
                $min
            }

            #[inline]
            fn max_value() -> $n {
                $max
            }
        }
    }
);

impl_bounded!(f32, f32::MIN, f32::MAX);
impl_bounded!(f64, f64::MIN, f64::MAX);
impl_bounded!(i8, i8::MIN, i8::MAX);
impl_bounded!(i16, i16::MIN, i16::MAX);
impl_bounded!(i32, i32::MIN, i32::MAX);
impl_bounded!(i64, i64::MIN, i64::MAX);
impl_bounded!(isize, isize::MIN, isize::MAX);
impl_bounded!(u8, u8::MIN, u8::MAX);
impl_bounded!(u16, u16::MIN, u16::MAX);
impl_bounded!(u32, u32::MIN, u32::MAX);
impl_bounded!(u64, u64::MIN, u64::MAX);
impl_bounded!(usize, usize::MIN, usize::MAX);


// BaseFloat
macro_rules! impl_base_float(
    ($n: ident) => {
        impl BaseFloat for $n {
            /// Archimedes' constant.
            fn pi() -> $n {
                $n::consts::PI
            }

            /// 2.0 * pi.
            fn two_pi() -> $n {
                2.0 * $n::consts::PI
            }

            /// pi / 2.0.
            fn frac_pi_2() -> $n {
                $n::consts::FRAC_PI_2
            }

            /// pi / 3.0.
            fn frac_pi_3() -> $n {
                $n::consts::FRAC_PI_3
            }

            /// pi / 4.0.
            fn frac_pi_4() -> $n {
                $n::consts::FRAC_PI_4
            }

            /// pi / 6.0.
            fn frac_pi_6() -> $n {
                $n::consts::FRAC_PI_6
            }

            /// pi / 8.0.
            fn frac_pi_8() -> $n {
                $n::consts::FRAC_PI_8
            }

            /// 1.0 / pi.
            fn frac_1_pi() -> $n {
                $n::consts::FRAC_1_PI
            }

            /// 2.0 / pi.
            fn frac_2_pi() -> $n {
                $n::consts::FRAC_2_PI
            }

            /// 2.0 / sqrt(pi).
            fn frac_2_sqrt_pi() -> $n {
                $n::consts::FRAC_2_SQRT_PI
            }


            /// Euler's number.
            fn e() -> $n {
                $n::consts::E
            }

            /// log2(e).
            fn log2_e() -> $n {
                $n::consts::LOG2_E
            }

            /// log10(e).
            fn log10_e() -> $n {
                $n::consts::LOG10_E
            }

            /// ln(2.0).
            fn ln_2() -> $n {
                $n::consts::LN_2
            }

            /// ln(10.0).
            fn ln_10() -> $n {
                $n::consts::LN_10
            }
        }
    }
);

impl BaseNum for i8 { }
impl BaseNum for i16 { }
impl BaseNum for i32 { }
impl BaseNum for i64 { }
impl BaseNum for isize { }
impl BaseNum for u8 { }
impl BaseNum for u16 { }
impl BaseNum for u32 { }
impl BaseNum for u64 { }
impl BaseNum for usize { }
impl BaseNum for f32 { }
impl BaseNum for f64 { }

impl_base_float!(f32);
impl_base_float!(f64);