1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
//! An implementation of the COO sparse matrix format.

use crate::SparseFormatError;

/// A COO representation of a sparse matrix.
///
/// A COO matrix stores entries in coordinate-form, that is triplets `(i, j, v)`, where `i` and `j`
/// correspond to row and column indices of the entry, and `v` to the value of the entry.
/// The format is of limited use for standard matrix operations. Its main purpose is to facilitate
/// easy construction of other, more efficient matrix formats (such as CSR/COO), and the
/// conversion between different formats.
///
/// # Format
///
/// For given dimensions `nrows` and `ncols`, the matrix is represented by three same-length
/// arrays `row_indices`, `col_indices` and `values` that constitute the coordinate triplets
/// of the matrix. The indices must be in bounds, but *duplicate entries are explicitly allowed*.
/// Upon conversion to other formats, the duplicate entries may be summed together. See the
/// documentation for the respective conversion functions.
///
/// # Examples
///
/// ```
/// use nalgebra_sparse::{coo::CooMatrix, csr::CsrMatrix, csc::CscMatrix};
///
/// // Initialize a matrix with all zeros (no explicitly stored entries).
/// let mut coo = CooMatrix::new(4, 4);
/// // Or initialize it with a set of triplets
/// coo = CooMatrix::try_from_triplets(4, 4, vec![1, 2], vec![0, 1], vec![3.0, 4.0]).unwrap();
///
/// // Push a few triplets
/// coo.push(2, 0, 1.0);
/// coo.push(0, 1, 2.0);
///
/// // Convert to other matrix formats
/// let csr = CsrMatrix::from(&coo);
/// let csc = CscMatrix::from(&coo);
/// ```
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct CooMatrix<T> {
    nrows: usize,
    ncols: usize,
    row_indices: Vec<usize>,
    col_indices: Vec<usize>,
    values: Vec<T>,
}

impl<T: na::Scalar> CooMatrix<T> {
    /// Pushes a dense matrix into the sparse one.
    ///
    /// This adds the dense matrix `m` starting at the `r`th row and `c`th column
    /// to the matrix.
    ///
    /// Panics
    /// ------
    ///
    /// Panics if any part of the dense matrix is out of bounds of the sparse matrix
    /// when inserted at `(r, c)`.
    #[inline]
    pub fn push_matrix<R: na::Dim, C: na::Dim, S: nalgebra::storage::RawStorage<T, R, C>>(
        &mut self,
        r: usize,
        c: usize,
        m: &na::Matrix<T, R, C, S>,
    ) {
        let block_nrows = m.nrows();
        let block_ncols = m.ncols();
        let max_row_with_block = r + block_nrows - 1;
        let max_col_with_block = c + block_ncols - 1;
        assert!(max_row_with_block < self.nrows);
        assert!(max_col_with_block < self.ncols);

        self.reserve(block_ncols * block_nrows);

        for (col_idx, col) in m.column_iter().enumerate() {
            for (row_idx, v) in col.iter().enumerate() {
                self.row_indices.push(r + row_idx);
                self.col_indices.push(c + col_idx);
                self.values.push(v.clone());
            }
        }
    }
}

impl<T> CooMatrix<T> {
    /// Construct a zero COO matrix of the given dimensions.
    ///
    /// Specifically, the collection of triplets - corresponding to explicitly stored entries -
    /// is empty, so that the matrix (implicitly) represented by the COO matrix consists of all
    /// zero entries.
    pub fn new(nrows: usize, ncols: usize) -> Self {
        Self {
            nrows,
            ncols,
            row_indices: Vec::new(),
            col_indices: Vec::new(),
            values: Vec::new(),
        }
    }

    /// Construct a zero COO matrix of the given dimensions.
    ///
    /// Specifically, the collection of triplets - corresponding to explicitly stored entries -
    /// is empty, so that the matrix (implicitly) represented by the COO matrix consists of all
    /// zero entries.
    pub fn zeros(nrows: usize, ncols: usize) -> Self {
        Self::new(nrows, ncols)
    }

    /// Try to construct a COO matrix from the given dimensions and a collection of
    /// (i, j, v) triplets.
    ///
    /// Returns an error if either row or column indices contain indices out of bounds,
    /// or if the data arrays do not all have the same length. Note that the COO format
    /// inherently supports duplicate entries.
    pub fn try_from_triplets(
        nrows: usize,
        ncols: usize,
        row_indices: Vec<usize>,
        col_indices: Vec<usize>,
        values: Vec<T>,
    ) -> Result<Self, SparseFormatError> {
        use crate::SparseFormatErrorKind::*;
        if row_indices.len() != col_indices.len() {
            return Err(SparseFormatError::from_kind_and_msg(
                InvalidStructure,
                "Number of row and col indices must be the same.",
            ));
        } else if col_indices.len() != values.len() {
            return Err(SparseFormatError::from_kind_and_msg(
                InvalidStructure,
                "Number of col indices and values must be the same.",
            ));
        }

        let row_indices_in_bounds = row_indices.iter().all(|i| *i < nrows);
        let col_indices_in_bounds = col_indices.iter().all(|j| *j < ncols);

        if !row_indices_in_bounds {
            Err(SparseFormatError::from_kind_and_msg(
                IndexOutOfBounds,
                "Row index out of bounds.",
            ))
        } else if !col_indices_in_bounds {
            Err(SparseFormatError::from_kind_and_msg(
                IndexOutOfBounds,
                "Col index out of bounds.",
            ))
        } else {
            Ok(Self {
                nrows,
                ncols,
                row_indices,
                col_indices,
                values,
            })
        }
    }

    /// An iterator over triplets (i, j, v).
    // TODO: Consider giving the iterator a concrete type instead of impl trait...?
    pub fn triplet_iter(&self) -> impl Iterator<Item = (usize, usize, &T)> {
        self.row_indices
            .iter()
            .zip(&self.col_indices)
            .zip(&self.values)
            .map(|((i, j), v)| (*i, *j, v))
    }

    /// Reserves capacity for COO matrix by at least `additional` elements.
    ///
    /// This increase the capacities of triplet holding arrays by reserving more space to avoid
    /// frequent reallocations in `push` operations.
    ///
    /// ## Panics
    ///
    /// Panics if any of the individual allocation of triplet arrays fails.
    ///
    /// ## Example
    ///
    /// ```
    /// # use nalgebra_sparse::coo::CooMatrix;
    /// let mut coo = CooMatrix::new(4, 4);
    /// // Reserve capacity in advance
    /// coo.reserve(10);
    /// coo.push(1, 0, 3.0);
    /// ```
    pub fn reserve(&mut self, additional: usize) {
        self.row_indices.reserve(additional);
        self.col_indices.reserve(additional);
        self.values.reserve(additional);
    }

    /// Push a single triplet to the matrix.
    ///
    /// This adds the value `v` to the `i`th row and `j`th column in the matrix.
    ///
    /// Panics
    /// ------
    ///
    /// Panics if `i` or `j` is out of bounds.
    #[inline]
    pub fn push(&mut self, i: usize, j: usize, v: T) {
        assert!(i < self.nrows);
        assert!(j < self.ncols);
        self.row_indices.push(i);
        self.col_indices.push(j);
        self.values.push(v);
    }

    /// The number of rows in the matrix.
    #[inline]
    #[must_use]
    pub fn nrows(&self) -> usize {
        self.nrows
    }

    /// The number of columns in the matrix.
    #[inline]
    #[must_use]
    pub fn ncols(&self) -> usize {
        self.ncols
    }

    /// The number of explicitly stored entries in the matrix.
    ///
    /// This number *includes* duplicate entries. For example, if the `CooMatrix` contains duplicate
    /// entries, then it may have a different number of non-zeros as reported by `nnz()` compared
    /// to its CSR representation.
    #[inline]
    #[must_use]
    pub fn nnz(&self) -> usize {
        self.values.len()
    }

    /// The row indices of the explicitly stored entries.
    #[must_use]
    pub fn row_indices(&self) -> &[usize] {
        &self.row_indices
    }

    /// The column indices of the explicitly stored entries.
    #[must_use]
    pub fn col_indices(&self) -> &[usize] {
        &self.col_indices
    }

    /// The values of the explicitly stored entries.
    #[must_use]
    pub fn values(&self) -> &[T] {
        &self.values
    }

    /// Disassembles the matrix into individual triplet arrays.
    ///
    /// Examples
    /// --------
    ///
    /// ```
    /// # use nalgebra_sparse::coo::CooMatrix;
    /// let row_indices = vec![0, 1];
    /// let col_indices = vec![1, 2];
    /// let values = vec![1.0, 2.0];
    /// let coo = CooMatrix::try_from_triplets(2, 3, row_indices, col_indices, values)
    ///     .unwrap();
    ///
    /// let (row_idx, col_idx, val) = coo.disassemble();
    /// assert_eq!(row_idx, vec![0, 1]);
    /// assert_eq!(col_idx, vec![1, 2]);
    /// assert_eq!(val, vec![1.0, 2.0]);
    /// ```
    pub fn disassemble(self) -> (Vec<usize>, Vec<usize>, Vec<T>) {
        (self.row_indices, self.col_indices, self.values)
    }
}