Crate nalgebra_spacetime
source ·Expand description
Spacetime Extension for nalgebra
§Present Features
- Minkowski space as special case of
LorentzianN
space. - Raising/Lowering tensor indices:
LorentzianN::dual
/LorentzianN::r_dual
/LorentzianN::c_dual
. - Metric contraction of degree-1/degree-2 tensors:
LorentzianN::contr
/LorentzianN::scalar
. - Spacetime
LorentzianN::interval
withLightCone
depiction. - Inertial
FrameN
of reference holding boost parameters. - Lorentz boost as
LorentzianN::new_boost
matrix. - Direct Lorentz
LorentzianN::boost
toFrameN::compose
velocities. - Wigner
FrameN::rotation
andFrameN::axis_angle
between to-be-composed boosts.
§Future Features
Event4
/Velocity4
/Momentum4
/...
equivalents ofPoint4
/...
.- Categorize
Rotation4
/PureBoost4
/...
asBoost4
/...
. - Wigner
FrameN::rotation
andFrameN::axis_angle
of an already-composedBoost4
. - Distinguish pre/post-rotation and active/passive
Boost4
compositions.
Re-exports§
pub use approx;
pub use nalgebra;
pub use num_traits;
Structs§
- Inertial frame of reference in $n$-dimensional Lorentzian space $\R^{-,+} = \R^{1,n-1}$.
- Momentum in $n$-dimensional Lorentzian space $\R^{-,+} = \R^{1,n-1}$.
Enums§
- Spacetime regions regarding an event’s light cone.
Traits§
- Extension for $n$-dimensional Lorentzian space $\R^{-,+} = \R^{1,n-1}$ with metric signature in spacelike sign convention.
Type Aliases§
- Inertial frame of reference in $2$-dimensional Lorentzian space $\R^{-,+} = \R^{1,1}$.
- Inertial frame of reference in $3$-dimensional Lorentzian space $\R^{-,+} = \R^{1,2}$.
- Inertial frame of reference in $4$-dimensional Lorentzian space $\R^{-,+} = \R^{1,3}$.
- Inertial frame of reference in $5$-dimensional Lorentzian space $\R^{-,+} = \R^{1,4}$.
- Inertial frame of reference in $6$-dimensional Lorentzian space $\R^{-,+} = \R^{1,5}$.
- Momentum in $2$-dimensional Lorentzian space $\R^{-,+} = \R^{1,1}$.
- Momentum in $3$-dimensional Lorentzian space $\R^{-,+} = \R^{1,2}$.
- Momentum in $4$-dimensional Lorentzian space $\R^{-,+} = \R^{1,3}$.
- Momentum in $5$-dimensional Lorentzian space $\R^{-,+} = \R^{1,4}$.
- Momentum in $6$-dimensional Lorentzian space $\R^{-,+} = \R^{1,5}$.