1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
use na::{self, DefaultAllocator};

use crate::aliases::TMat;
use crate::traits::{Alloc, Dimension, Number};

/// The sum of every component of the given matrix or vector.
///
/// # Examples:
///
/// ```
/// # use nalgebra_glm as glm;
/// let vec = glm::vec2(3.0, 4.0);
/// assert_eq!(7.0, glm::comp_add(&vec));
///
/// let mat = glm::mat2(0.0, 1.0, -3.0, 3.0);
/// assert_eq!(1.0, glm::comp_add(&mat));
/// ```
///
/// # See also:
///
/// * [`comp_max`](fn.comp_max.html)
/// * [`comp_min`](fn.comp_min.html)
/// * [`comp_mul`](fn.comp_mul.html)
pub fn comp_add<N: Number, R: Dimension, C: Dimension>(m: &TMat<N, R, C>) -> N
where
    DefaultAllocator: Alloc<N, R, C>,
{
    m.iter().fold(N::zero(), |x, y| x + *y)
}

/// The maximum of every component of the given matrix or vector.
///
/// # Examples:
///
/// ```
/// # use nalgebra_glm as glm;
/// let vec = glm::vec2(3.0, 4.0);
/// assert_eq!(4.0, glm::comp_max(&vec));
///
/// let mat = glm::mat2(0.0, 1.0, -3.0, 3.0);
/// assert_eq!(3.0, glm::comp_max(&mat));
/// ```
///
/// # See also:
///
/// * [`comp_add`](fn.comp_add.html)
/// * [`comp_max`](fn.comp_max.html)
/// * [`comp_min`](fn.comp_min.html)
/// * [`max`](fn.max.html)
/// * [`max2`](fn.max2.html)
/// * [`max3`](fn.max3.html)
/// * [`max4`](fn.max4.html)
pub fn comp_max<N: Number, R: Dimension, C: Dimension>(m: &TMat<N, R, C>) -> N
where
    DefaultAllocator: Alloc<N, R, C>,
{
    m.iter()
        .fold(N::min_value(), |x, y| crate::max2_scalar(x, *y))
}

/// The minimum of every component of the given matrix or vector.
///
/// # Examples:
///
/// ```
/// # use nalgebra_glm as glm;
/// let vec = glm::vec2(3.0, 4.0);
/// assert_eq!(3.0, glm::comp_min(&vec));
///
/// let mat = glm::mat2(0.0, 1.0, -3.0, 3.0);
/// assert_eq!(-3.0, glm::comp_min(&mat));
/// ```
///
/// # See also:
///
/// * [`comp_add`](fn.comp_add.html)
/// * [`comp_max`](fn.comp_max.html)
/// * [`comp_mul`](fn.comp_mul.html)
/// * [`min`](fn.min.html)
/// * [`min2`](fn.min2.html)
/// * [`min3`](fn.min3.html)
/// * [`min4`](fn.min4.html)
pub fn comp_min<N: Number, R: Dimension, C: Dimension>(m: &TMat<N, R, C>) -> N
where
    DefaultAllocator: Alloc<N, R, C>,
{
    m.iter()
        .fold(N::max_value(), |x, y| crate::min2_scalar(x, *y))
}

/// The product of every component of the given matrix or vector.
///
/// # Examples:
///
/// ```
/// # use nalgebra_glm as glm;
/// let vec = glm::vec2(3.0, 4.0);
/// assert_eq!(12.0, glm::comp_mul(&vec));
///
/// let mat = glm::mat2(1.0, 1.0, -3.0, 3.0);
/// assert_eq!(-9.0, glm::comp_mul(&mat));
/// ```
///
/// # See also:
///
/// * [`comp_add`](fn.comp_add.html)
/// * [`comp_max`](fn.comp_max.html)
/// * [`comp_min`](fn.comp_min.html)
pub fn comp_mul<N: Number, R: Dimension, C: Dimension>(m: &TMat<N, R, C>) -> N
where
    DefaultAllocator: Alloc<N, R, C>,
{
    m.iter().fold(N::one(), |x, y| x * *y)
}

//pub fn vec< L, floatType, Q > compNormalize (vec< L, T, Q > const &v)
//pub fn vec< L, T, Q > compScale (vec< L, floatType, Q > const &v)