1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
/*! Module analyzer.

Figures out the following properties:
  - control flow uniformity
  - texture/sampler pairs
  - expression reference counts
!*/

use super::{CallError, ExpressionError, FunctionError, ModuleInfo, ShaderStages, ValidationFlags};
use crate::{
    arena::{Arena, Handle},
    proc::{ResolveContext, TypeResolution},
};
use std::ops;

pub type NonUniformResult = Option<Handle<crate::Expression>>;

bitflags::bitflags! {
    /// Kinds of expressions that require uniform control flow.
    #[cfg_attr(feature = "serialize", derive(serde::Serialize))]
    #[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
    pub struct UniformityRequirements: u8 {
        const WORK_GROUP_BARRIER = 0x1;
        const DERIVATIVE = 0x2;
        const IMPLICIT_LEVEL = 0x4;
    }
}

/// Uniform control flow characteristics.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
#[cfg_attr(test, derive(PartialEq))]
pub struct Uniformity {
    /// A child expression with non-uniform result.
    ///
    /// This means, when the relevant invocations are scheduled on a compute unit,
    /// they have to use vector registers to store an individual value
    /// per invocation.
    ///
    /// Whenever the control flow is conditioned on such value,
    /// the hardware needs to keep track of the mask of invocations,
    /// and process all branches of the control flow.
    ///
    /// Any operations that depend on non-uniform results also produce non-uniform.
    pub non_uniform_result: NonUniformResult,
    /// If this expression requires uniform control flow, store the reason here.
    pub requirements: UniformityRequirements,
}

impl Uniformity {
    fn new() -> Self {
        Uniformity {
            non_uniform_result: None,
            requirements: UniformityRequirements::empty(),
        }
    }
}

bitflags::bitflags! {
    struct ExitFlags: u8 {
        /// Control flow may return from the function, which makes all the
        /// subsequent statements within the current function (only!)
        /// to be executed in a non-uniform control flow.
        const MAY_RETURN = 0x1;
        /// Control flow may be killed. Anything after `Statement::Kill` is
        /// considered inside non-uniform context.
        const MAY_KILL = 0x2;
    }
}

/// Uniformity characteristics of a function.
#[cfg_attr(test, derive(Debug, PartialEq))]
struct FunctionUniformity {
    result: Uniformity,
    exit: ExitFlags,
}

impl ops::BitOr for FunctionUniformity {
    type Output = Self;
    fn bitor(self, other: Self) -> Self {
        FunctionUniformity {
            result: Uniformity {
                non_uniform_result: self
                    .result
                    .non_uniform_result
                    .or(other.result.non_uniform_result),
                requirements: self.result.requirements | other.result.requirements,
            },
            exit: self.exit | other.exit,
        }
    }
}

impl FunctionUniformity {
    fn new() -> Self {
        FunctionUniformity {
            result: Uniformity::new(),
            exit: ExitFlags::empty(),
        }
    }

    /// Returns a disruptor based on the stored exit flags, if any.
    fn exit_disruptor(&self) -> Option<UniformityDisruptor> {
        if self.exit.contains(ExitFlags::MAY_RETURN) {
            Some(UniformityDisruptor::Return)
        } else if self.exit.contains(ExitFlags::MAY_KILL) {
            Some(UniformityDisruptor::Discard)
        } else {
            None
        }
    }
}

bitflags::bitflags! {
    /// Indicates how a global variable is used.
    #[cfg_attr(feature = "serialize", derive(serde::Serialize))]
    #[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
    pub struct GlobalUse: u8 {
        /// Data will be read from the variable.
        const READ = 0x1;
        /// Data will be written to the variable.
        const WRITE = 0x2;
        /// The information about the data is queried.
        const QUERY = 0x4;
    }
}

#[derive(Clone, Debug, Eq, Hash, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
pub struct SamplingKey {
    pub image: Handle<crate::GlobalVariable>,
    pub sampler: Handle<crate::GlobalVariable>,
}

#[derive(Clone, Debug)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
pub struct ExpressionInfo {
    pub uniformity: Uniformity,
    pub ref_count: usize,
    assignable_global: Option<Handle<crate::GlobalVariable>>,
    pub ty: TypeResolution,
}

impl ExpressionInfo {
    fn new() -> Self {
        ExpressionInfo {
            uniformity: Uniformity::new(),
            ref_count: 0,
            assignable_global: None,
            // this doesn't matter at this point, will be overwritten
            ty: TypeResolution::Value(crate::TypeInner::Scalar {
                kind: crate::ScalarKind::Bool,
                width: 0,
            }),
        }
    }
}

#[derive(Debug)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
pub struct FunctionInfo {
    /// Validation flags.
    flags: ValidationFlags,
    /// Set of shader stages where calling this function is valid.
    pub available_stages: ShaderStages,
    /// Uniformity characteristics.
    pub uniformity: Uniformity,
    /// Function may kill the invocation.
    pub may_kill: bool,
    /// Set of image-sampler pais used with sampling.
    pub sampling_set: crate::FastHashSet<SamplingKey>,
    /// Vector of global variable usages.
    ///
    /// Each item corresponds to a global variable in the module.
    global_uses: Box<[GlobalUse]>,
    /// Vector of expression infos.
    ///
    /// Each item corresponds to an expression in the function.
    expressions: Box<[ExpressionInfo]>,
}

impl FunctionInfo {
    pub fn global_variable_count(&self) -> usize {
        self.global_uses.len()
    }
    pub fn expression_count(&self) -> usize {
        self.expressions.len()
    }
    pub fn dominates_global_use(&self, other: &Self) -> bool {
        for (self_global_uses, other_global_uses) in
            self.global_uses.iter().zip(other.global_uses.iter())
        {
            if !self_global_uses.contains(*other_global_uses) {
                return false;
            }
        }
        true
    }
}

impl ops::Index<Handle<crate::GlobalVariable>> for FunctionInfo {
    type Output = GlobalUse;
    fn index(&self, handle: Handle<crate::GlobalVariable>) -> &GlobalUse {
        &self.global_uses[handle.index()]
    }
}

impl ops::Index<Handle<crate::Expression>> for FunctionInfo {
    type Output = ExpressionInfo;
    fn index(&self, handle: Handle<crate::Expression>) -> &ExpressionInfo {
        &self.expressions[handle.index()]
    }
}

/// Disruptor of the uniform control flow.
#[derive(Clone, Copy, Debug, thiserror::Error)]
#[cfg_attr(test, derive(PartialEq))]
pub enum UniformityDisruptor {
    #[error("Expression {0:?} produced non-uniform result, and control flow depends on it")]
    Expression(Handle<crate::Expression>),
    #[error("There is a Return earlier in the control flow of the function")]
    Return,
    #[error("There is a Discard earlier in the entry point across all called functions")]
    Discard,
}

impl FunctionInfo {
    /// Adds a value-type reference to an expression.
    #[must_use]
    fn add_ref_impl(
        &mut self,
        handle: Handle<crate::Expression>,
        global_use: GlobalUse,
    ) -> NonUniformResult {
        let info = &mut self.expressions[handle.index()];
        info.ref_count += 1;
        // mark the used global as read
        if let Some(global) = info.assignable_global {
            self.global_uses[global.index()] |= global_use;
        }
        info.uniformity.non_uniform_result
    }

    /// Adds a value-type reference to an expression.
    #[must_use]
    fn add_ref(&mut self, handle: Handle<crate::Expression>) -> NonUniformResult {
        self.add_ref_impl(handle, GlobalUse::READ)
    }

    /// Adds a potentially assignable reference to an expression.
    /// These are destinations for `Store` and `ImageStore` statements,
    /// which can transit through `Access` and `AccessIndex`.
    #[must_use]
    fn add_assignable_ref(
        &mut self,
        handle: Handle<crate::Expression>,
        assignable_global: &mut Option<Handle<crate::GlobalVariable>>,
    ) -> NonUniformResult {
        let info = &mut self.expressions[handle.index()];
        info.ref_count += 1;
        // propagate the assignable global up the chain, till it either hits
        // a value-type expression, or the assignment statement.
        if let Some(global) = info.assignable_global {
            if let Some(_old) = assignable_global.replace(global) {
                unreachable!()
            }
        }
        info.uniformity.non_uniform_result
    }

    /// Inherit information from a called function.
    fn process_call(&mut self, info: &Self) -> FunctionUniformity {
        for key in info.sampling_set.iter() {
            self.sampling_set.insert(key.clone());
        }
        for (mine, other) in self.global_uses.iter_mut().zip(info.global_uses.iter()) {
            *mine |= *other;
        }
        FunctionUniformity {
            result: info.uniformity.clone(),
            exit: if info.may_kill {
                ExitFlags::MAY_KILL
            } else {
                ExitFlags::empty()
            },
        }
    }

    /// Computes the expression info and stores it in `self.expressions`.
    /// Also, bumps the reference counts on dependent expressions.
    #[allow(clippy::or_fun_call)]
    fn process_expression(
        &mut self,
        handle: Handle<crate::Expression>,
        expression: &crate::Expression,
        expression_arena: &Arena<crate::Expression>,
        other_functions: &[FunctionInfo],
        type_arena: &Arena<crate::Type>,
        resolve_context: &ResolveContext,
    ) -> Result<(), ExpressionError> {
        use crate::{Expression as E, SampleLevel as Sl};

        let mut assignable_global = None;
        let uniformity = match *expression {
            E::Access { base, index } => Uniformity {
                non_uniform_result: self
                    .add_assignable_ref(base, &mut assignable_global)
                    .or(self.add_ref(index)),
                requirements: UniformityRequirements::empty(),
            },
            E::AccessIndex { base, .. } => Uniformity {
                non_uniform_result: self.add_assignable_ref(base, &mut assignable_global),
                requirements: UniformityRequirements::empty(),
            },
            // always uniform
            E::Constant(_) => Uniformity::new(),
            E::Splat { size: _, value } => Uniformity {
                non_uniform_result: self.add_ref(value),
                requirements: UniformityRequirements::empty(),
            },
            E::Swizzle { vector, .. } => Uniformity {
                non_uniform_result: self.add_ref(vector),
                requirements: UniformityRequirements::empty(),
            },
            E::Compose { ref components, .. } => {
                let non_uniform_result = components
                    .iter()
                    .fold(None, |nur, &comp| nur.or(self.add_ref(comp)));
                Uniformity {
                    non_uniform_result,
                    requirements: UniformityRequirements::empty(),
                }
            }
            // depends on the builtin or interpolation
            E::FunctionArgument(index) => {
                let arg = &resolve_context.arguments[index as usize];
                let uniform = match arg.binding {
                    Some(crate::Binding::BuiltIn(built_in)) => match built_in {
                        // per-polygon built-ins are uniform
                        crate::BuiltIn::FrontFacing
                        // per-work-group built-ins are uniform
                        | crate::BuiltIn::WorkGroupId
                        | crate::BuiltIn::WorkGroupSize => true,
                        _ => false,
                    },
                    // only flat inputs are uniform
                    Some(crate::Binding::Location {
                        interpolation: Some(crate::Interpolation::Flat),
                        ..
                    }) => true,
                    _ => false,
                };
                Uniformity {
                    non_uniform_result: if uniform { None } else { Some(handle) },
                    requirements: UniformityRequirements::empty(),
                }
            }
            // depends on the storage class
            E::GlobalVariable(gh) => {
                use crate::StorageClass as Sc;
                assignable_global = Some(gh);
                let var = &resolve_context.global_vars[gh];
                let uniform = match var.class {
                    // local data is non-uniform
                    Sc::Function | Sc::Private => false,
                    // workgroup memory is exclusively accessed by the group
                    Sc::WorkGroup => true,
                    // uniform data
                    Sc::Uniform | Sc::PushConstant => true,
                    // storage data is only uniform when read-only
                    Sc::Handle | Sc::Storage => {
                        !var.storage_access.contains(crate::StorageAccess::STORE)
                    }
                };
                Uniformity {
                    non_uniform_result: if uniform { None } else { Some(handle) },
                    requirements: UniformityRequirements::empty(),
                }
            }
            E::LocalVariable(_) => Uniformity {
                non_uniform_result: Some(handle),
                requirements: UniformityRequirements::empty(),
            },
            E::Load { pointer } => Uniformity {
                non_uniform_result: self.add_ref(pointer),
                requirements: UniformityRequirements::empty(),
            },
            E::ImageSample {
                image,
                sampler,
                coordinate,
                array_index,
                offset: _,
                level,
                depth_ref,
            } => {
                self.sampling_set.insert(SamplingKey {
                    image: match expression_arena[image] {
                        crate::Expression::GlobalVariable(var) => var,
                        _ => return Err(ExpressionError::ExpectedGlobalVariable),
                    },
                    sampler: match expression_arena[sampler] {
                        crate::Expression::GlobalVariable(var) => var,
                        _ => return Err(ExpressionError::ExpectedGlobalVariable),
                    },
                });
                // "nur" == "Non-Uniform Result"
                let array_nur = array_index.and_then(|h| self.add_ref(h));
                let level_nur = match level {
                    Sl::Auto | Sl::Zero => None,
                    Sl::Exact(h) | Sl::Bias(h) => self.add_ref(h),
                    Sl::Gradient { x, y } => self.add_ref(x).or(self.add_ref(y)),
                };
                let dref_nur = depth_ref.and_then(|h| self.add_ref(h));
                Uniformity {
                    non_uniform_result: self
                        .add_ref(image)
                        .or(self.add_ref(sampler))
                        .or(self.add_ref(coordinate))
                        .or(array_nur)
                        .or(level_nur)
                        .or(dref_nur),
                    requirements: if level.implicit_derivatives() {
                        UniformityRequirements::IMPLICIT_LEVEL
                    } else {
                        UniformityRequirements::empty()
                    },
                }
            }
            E::ImageLoad {
                image,
                coordinate,
                array_index,
                index,
            } => {
                let array_nur = array_index.and_then(|h| self.add_ref(h));
                let index_nur = index.and_then(|h| self.add_ref(h));
                Uniformity {
                    non_uniform_result: self
                        .add_ref(image)
                        .or(self.add_ref(coordinate))
                        .or(array_nur)
                        .or(index_nur),
                    requirements: UniformityRequirements::empty(),
                }
            }
            E::ImageQuery { image, query } => {
                let query_nur = match query {
                    crate::ImageQuery::Size { level: Some(h) } => self.add_ref(h),
                    _ => None,
                };
                Uniformity {
                    non_uniform_result: self.add_ref_impl(image, GlobalUse::QUERY).or(query_nur),
                    requirements: UniformityRequirements::empty(),
                }
            }
            E::Unary { expr, .. } => Uniformity {
                non_uniform_result: self.add_ref(expr),
                requirements: UniformityRequirements::empty(),
            },
            E::Binary { left, right, .. } => Uniformity {
                non_uniform_result: self.add_ref(left).or(self.add_ref(right)),
                requirements: UniformityRequirements::empty(),
            },
            E::Select {
                condition,
                accept,
                reject,
            } => Uniformity {
                non_uniform_result: self
                    .add_ref(condition)
                    .or(self.add_ref(accept))
                    .or(self.add_ref(reject)),
                requirements: UniformityRequirements::empty(),
            },
            // explicit derivatives require uniform
            E::Derivative { expr, .. } => Uniformity {
                //Note: taking a derivative of a uniform doesn't make it non-uniform
                non_uniform_result: self.add_ref(expr),
                requirements: UniformityRequirements::DERIVATIVE,
            },
            E::Relational { argument, .. } => Uniformity {
                non_uniform_result: self.add_ref(argument),
                requirements: UniformityRequirements::empty(),
            },
            E::Math {
                arg, arg1, arg2, ..
            } => {
                let arg1_nur = arg1.and_then(|h| self.add_ref(h));
                let arg2_nur = arg2.and_then(|h| self.add_ref(h));
                Uniformity {
                    non_uniform_result: self.add_ref(arg).or(arg1_nur).or(arg2_nur),
                    requirements: UniformityRequirements::empty(),
                }
            }
            E::As { expr, .. } => Uniformity {
                non_uniform_result: self.add_ref(expr),
                requirements: UniformityRequirements::empty(),
            },
            E::Call(function) => {
                let fun = other_functions
                    .get(function.index())
                    .ok_or(ExpressionError::CallToUndeclaredFunction(function))?;
                self.process_call(fun).result
            }
            E::ArrayLength(expr) => Uniformity {
                non_uniform_result: self.add_ref_impl(expr, GlobalUse::QUERY),
                requirements: UniformityRequirements::empty(),
            },
        };

        let ty =
            resolve_context.resolve(expression, type_arena, |h| &self.expressions[h.index()].ty)?;
        self.expressions[handle.index()] = ExpressionInfo {
            uniformity,
            ref_count: 0,
            assignable_global,
            ty,
        };
        Ok(())
    }

    /// Analyzes the uniformity requirements of a block (as a sequence of statements).
    /// Returns the uniformity characteristics at the *function* level, i.e.
    /// whether or not the function requires to be called in uniform control flow,
    /// and whether the produced result is not disrupting the control flow.
    ///
    /// The parent control flow is uniform if `disruptor.is_none()`.
    ///
    /// Returns a `NonUniformControlFlow` error if any of the expressions in the block
    /// require uniformity, but the current flow is non-uniform.
    #[allow(clippy::or_fun_call)]
    fn process_block(
        &mut self,
        statements: &[crate::Statement],
        other_functions: &[FunctionInfo],
        mut disruptor: Option<UniformityDisruptor>,
    ) -> Result<FunctionUniformity, FunctionError> {
        use crate::Statement as S;

        let mut combined_uniformity = FunctionUniformity::new();
        for statement in statements {
            let uniformity = match *statement {
                S::Emit(ref range) => {
                    let mut requirements = UniformityRequirements::empty();
                    for expr in range.clone() {
                        let req = self.expressions[expr.index()].uniformity.requirements;
                        if self
                            .flags
                            .contains(super::ValidationFlags::CONTROL_FLOW_UNIFORMITY)
                            && !req.is_empty()
                        {
                            if let Some(cause) = disruptor {
                                return Err(FunctionError::NonUniformControlFlow(req, expr, cause));
                            }
                        }
                        requirements |= req;
                    }
                    FunctionUniformity {
                        result: Uniformity {
                            non_uniform_result: None,
                            requirements,
                        },
                        exit: ExitFlags::empty(),
                    }
                }
                S::Break | S::Continue => FunctionUniformity::new(),
                S::Kill => FunctionUniformity {
                    result: Uniformity::new(),
                    exit: ExitFlags::MAY_KILL,
                },
                S::Block(ref b) => self.process_block(b, other_functions, disruptor)?,
                S::If {
                    condition,
                    ref accept,
                    ref reject,
                } => {
                    let condition_nur = self.add_ref(condition);
                    let branch_disruptor =
                        disruptor.or(condition_nur.map(UniformityDisruptor::Expression));
                    let accept_uniformity =
                        self.process_block(accept, other_functions, branch_disruptor)?;
                    let reject_uniformity =
                        self.process_block(reject, other_functions, branch_disruptor)?;
                    accept_uniformity | reject_uniformity
                }
                S::Switch {
                    selector,
                    ref cases,
                    ref default,
                } => {
                    let selector_nur = self.add_ref(selector);
                    let branch_disruptor =
                        disruptor.or(selector_nur.map(UniformityDisruptor::Expression));
                    let mut uniformity = FunctionUniformity::new();
                    let mut case_disruptor = branch_disruptor;
                    for case in cases.iter() {
                        let case_uniformity =
                            self.process_block(&case.body, other_functions, case_disruptor)?;
                        case_disruptor = if case.fall_through {
                            case_disruptor.or(case_uniformity.exit_disruptor())
                        } else {
                            branch_disruptor
                        };
                        uniformity = uniformity | case_uniformity;
                    }
                    // using the disruptor inherited from the last fall-through chain
                    let default_exit =
                        self.process_block(default, other_functions, case_disruptor)?;
                    uniformity | default_exit
                }
                S::Loop {
                    ref body,
                    ref continuing,
                } => {
                    let body_uniformity = self.process_block(body, other_functions, disruptor)?;
                    let continuing_disruptor = disruptor.or(body_uniformity.exit_disruptor());
                    let continuing_uniformity =
                        self.process_block(continuing, other_functions, continuing_disruptor)?;
                    body_uniformity | continuing_uniformity
                }
                S::Return { value } => FunctionUniformity {
                    result: Uniformity {
                        non_uniform_result: value.and_then(|expr| self.add_ref(expr)),
                        requirements: UniformityRequirements::empty(),
                    },
                    //TODO: if we are in the uniform control flow, should this still be an exit flag?
                    exit: ExitFlags::MAY_RETURN,
                },
                // Here and below, the used expressions are already emitted,
                // and their results do not affect the function return value,
                // so we can ignore their non-uniformity.
                S::Store { pointer, value } => {
                    let _ = self.add_ref_impl(pointer, GlobalUse::WRITE);
                    let _ = self.add_ref(value);
                    FunctionUniformity::new()
                }
                S::ImageStore {
                    image,
                    coordinate,
                    array_index,
                    value,
                } => {
                    let _ = self.add_ref_impl(image, GlobalUse::WRITE);
                    if let Some(expr) = array_index {
                        let _ = self.add_ref(expr);
                    }
                    let _ = self.add_ref(coordinate);
                    let _ = self.add_ref(value);
                    FunctionUniformity::new()
                }
                S::Call {
                    function,
                    ref arguments,
                    result: _,
                } => {
                    for &argument in arguments {
                        let _ = self.add_ref(argument);
                    }
                    let info = other_functions.get(function.index()).ok_or(
                        FunctionError::InvalidCall {
                            function,
                            error: CallError::ForwardDeclaredFunction,
                        },
                    )?;
                    //Note: the result is validated by the Validator, not here
                    self.process_call(info)
                }
            };

            disruptor = disruptor.or(uniformity.exit_disruptor());
            combined_uniformity = combined_uniformity | uniformity;
        }
        Ok(combined_uniformity)
    }
}

impl ModuleInfo {
    /// Builds the `FunctionInfo` based on the function, and validates the
    /// uniform control flow if required by the expressions of this function.
    pub(super) fn process_function(
        &self,
        fun: &crate::Function,
        module: &crate::Module,
        flags: ValidationFlags,
    ) -> Result<FunctionInfo, FunctionError> {
        let mut info = FunctionInfo {
            flags,
            available_stages: ShaderStages::all(),
            uniformity: Uniformity::new(),
            may_kill: false,
            sampling_set: crate::FastHashSet::default(),
            global_uses: vec![GlobalUse::empty(); module.global_variables.len()].into_boxed_slice(),
            expressions: vec![ExpressionInfo::new(); fun.expressions.len()].into_boxed_slice(),
        };
        let resolve_context = ResolveContext {
            constants: &module.constants,
            global_vars: &module.global_variables,
            local_vars: &fun.local_variables,
            functions: &module.functions,
            arguments: &fun.arguments,
        };

        for (handle, expr) in fun.expressions.iter() {
            if let Err(error) = info.process_expression(
                handle,
                expr,
                &fun.expressions,
                &self.functions,
                &module.types,
                &resolve_context,
            ) {
                return Err(FunctionError::Expression { handle, error });
            }
        }

        let uniformity = info.process_block(&fun.body, &self.functions, None)?;
        info.uniformity = uniformity.result;
        info.may_kill = uniformity.exit.contains(ExitFlags::MAY_KILL);

        Ok(info)
    }

    pub fn get_entry_point(&self, index: usize) -> &FunctionInfo {
        &self.entry_points[index]
    }
}

#[test]
fn uniform_control_flow() {
    use crate::{Expression as E, Statement as S};

    let mut constant_arena = Arena::new();
    let constant = constant_arena.append(crate::Constant {
        name: None,
        specialization: None,
        inner: crate::ConstantInner::Scalar {
            width: 4,
            value: crate::ScalarValue::Uint(0),
        },
    });
    let mut type_arena = Arena::new();
    let ty = type_arena.append(crate::Type {
        name: None,
        inner: crate::TypeInner::Vector {
            size: crate::VectorSize::Bi,
            kind: crate::ScalarKind::Float,
            width: 4,
        },
    });
    let mut global_var_arena = Arena::new();
    let non_uniform_global = global_var_arena.append(crate::GlobalVariable {
        name: None,
        init: None,
        ty,
        class: crate::StorageClass::Handle,
        binding: None,
        storage_access: crate::StorageAccess::STORE,
    });
    let uniform_global = global_var_arena.append(crate::GlobalVariable {
        name: None,
        init: None,
        ty,
        binding: None,
        class: crate::StorageClass::Uniform,
        storage_access: crate::StorageAccess::empty(),
    });

    let mut expressions = Arena::new();
    // checks the uniform control flow
    let constant_expr = expressions.append(E::Constant(constant));
    // checks the non-uniform control flow
    let derivative_expr = expressions.append(E::Derivative {
        axis: crate::DerivativeAxis::X,
        expr: constant_expr,
    });
    let emit_range_constant_derivative = expressions.range_from(0);
    let non_uniform_global_expr = expressions.append(E::GlobalVariable(non_uniform_global));
    let uniform_global_expr = expressions.append(E::GlobalVariable(uniform_global));
    let emit_range_globals = expressions.range_from(2);

    // checks the QUERY flag
    let query_expr = expressions.append(E::ArrayLength(uniform_global_expr));
    // checks the transitive WRITE flag
    let access_expr = expressions.append(E::AccessIndex {
        base: non_uniform_global_expr,
        index: 1,
    });
    let emit_range_query_access_globals = expressions.range_from(2);

    let mut info = FunctionInfo {
        flags: ValidationFlags::all(),
        available_stages: ShaderStages::all(),
        uniformity: Uniformity::new(),
        may_kill: false,
        sampling_set: crate::FastHashSet::default(),
        global_uses: vec![GlobalUse::empty(); global_var_arena.len()].into_boxed_slice(),
        expressions: vec![ExpressionInfo::new(); expressions.len()].into_boxed_slice(),
    };
    let resolve_context = ResolveContext {
        constants: &constant_arena,
        global_vars: &global_var_arena,
        local_vars: &Arena::new(),
        functions: &Arena::new(),
        arguments: &[],
    };
    for (handle, expression) in expressions.iter() {
        info.process_expression(
            handle,
            expression,
            &expressions,
            &[],
            &type_arena,
            &resolve_context,
        )
        .unwrap();
    }
    assert_eq!(info[non_uniform_global_expr].ref_count, 1);
    assert_eq!(info[uniform_global_expr].ref_count, 1);
    assert_eq!(info[query_expr].ref_count, 0);
    assert_eq!(info[access_expr].ref_count, 0);
    assert_eq!(info[non_uniform_global], GlobalUse::empty());
    assert_eq!(info[uniform_global], GlobalUse::QUERY);

    let stmt_emit1 = S::Emit(emit_range_globals.clone());
    let stmt_if_uniform = S::If {
        condition: uniform_global_expr,
        accept: Vec::new(),
        reject: vec![
            S::Emit(emit_range_constant_derivative.clone()),
            S::Store {
                pointer: constant_expr,
                value: derivative_expr,
            },
        ],
    };
    assert_eq!(
        info.process_block(&[stmt_emit1, stmt_if_uniform], &[], None),
        Ok(FunctionUniformity {
            result: Uniformity {
                non_uniform_result: None,
                requirements: UniformityRequirements::DERIVATIVE,
            },
            exit: ExitFlags::empty(),
        }),
    );
    assert_eq!(info[constant_expr].ref_count, 2);
    assert_eq!(info[uniform_global], GlobalUse::READ | GlobalUse::QUERY);

    let stmt_emit2 = S::Emit(emit_range_globals.clone());
    let stmt_if_non_uniform = S::If {
        condition: non_uniform_global_expr,
        accept: vec![
            S::Emit(emit_range_constant_derivative.clone()),
            S::Store {
                pointer: constant_expr,
                value: derivative_expr,
            },
        ],
        reject: Vec::new(),
    };
    assert_eq!(
        info.process_block(&[stmt_emit2, stmt_if_non_uniform], &[], None),
        Err(FunctionError::NonUniformControlFlow(
            UniformityRequirements::DERIVATIVE,
            derivative_expr,
            UniformityDisruptor::Expression(non_uniform_global_expr)
        )),
    );
    assert_eq!(info[derivative_expr].ref_count, 1);
    assert_eq!(info[non_uniform_global], GlobalUse::READ);

    let stmt_emit3 = S::Emit(emit_range_globals);
    let stmt_return_non_uniform = S::Return {
        value: Some(non_uniform_global_expr),
    };
    assert_eq!(
        info.process_block(
            &[stmt_emit3, stmt_return_non_uniform],
            &[],
            Some(UniformityDisruptor::Return)
        ),
        Ok(FunctionUniformity {
            result: Uniformity {
                non_uniform_result: Some(non_uniform_global_expr),
                requirements: UniformityRequirements::empty(),
            },
            exit: ExitFlags::MAY_RETURN,
        }),
    );
    assert_eq!(info[non_uniform_global_expr].ref_count, 3);

    // Check that uniformity requirements reach through a pointer
    let stmt_emit4 = S::Emit(emit_range_query_access_globals);
    let stmt_assign = S::Store {
        pointer: access_expr,
        value: query_expr,
    };
    let stmt_return_pointer = S::Return {
        value: Some(access_expr),
    };
    let stmt_kill = S::Kill;
    assert_eq!(
        info.process_block(
            &[stmt_emit4, stmt_assign, stmt_kill, stmt_return_pointer],
            &[],
            Some(UniformityDisruptor::Discard)
        ),
        Ok(FunctionUniformity {
            result: Uniformity {
                non_uniform_result: Some(non_uniform_global_expr),
                requirements: UniformityRequirements::empty(),
            },
            exit: ExitFlags::all(),
        }),
    );
    assert_eq!(info[non_uniform_global], GlobalUse::READ | GlobalUse::WRITE);
}