[][src]Struct na::Multiplicative

pub struct Multiplicative;

The multiplication operator, commonly symbolized by ×.

Trait Implementations

impl<N> TwoSidedInverse<Multiplicative> for Unit<Quaternion<N>> where
    N: RealField
[src]

impl<N, D> TwoSidedInverse<Multiplicative> for Translation<N, D> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N, D, R> TwoSidedInverse<Multiplicative> for Similarity<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N, D, R> TwoSidedInverse<Multiplicative> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N> TwoSidedInverse<Multiplicative> for Unit<Complex<N>> where
    N: RealField
[src]

impl<N, D, C> TwoSidedInverse<Multiplicative> for Transform<N, D, C> where
    C: SubTCategoryOf<TProjective>,
    D: DimNameAdd<U1>,
    N: RealField,
    DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>, 
[src]

impl<N, D> TwoSidedInverse<Multiplicative> for Rotation<N, D> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, D>, 
[src]

impl<N> AbstractGroup<Multiplicative> for Unit<Complex<N>> where
    N: RealField
[src]

impl<N> AbstractGroup<Multiplicative> for Unit<Quaternion<N>> where
    N: RealField
[src]

impl<N, D, R> AbstractGroup<Multiplicative> for Similarity<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N, D> AbstractGroup<Multiplicative> for Translation<N, D> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N, D, R> AbstractGroup<Multiplicative> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N, D, C> AbstractGroup<Multiplicative> for Transform<N, D, C> where
    C: SubTCategoryOf<TProjective>,
    D: DimNameAdd<U1>,
    N: RealField,
    DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>, 
[src]

impl<N, D> AbstractGroup<Multiplicative> for Rotation<N, D> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, D>, 
[src]

impl<N> AbstractSemigroup<Multiplicative> for Quaternion<N> where
    N: RealField
[src]

default fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more

default fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if associativity holds for the given arguments.

impl<N, D> AbstractSemigroup<Multiplicative> for Translation<N, D> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

default fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more

default fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if associativity holds for the given arguments.

impl<N, D> AbstractSemigroup<Multiplicative> for Rotation<N, D> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, D>, 
[src]

default fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more

default fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if associativity holds for the given arguments.

impl<N> AbstractSemigroup<Multiplicative> for Unit<Complex<N>> where
    N: RealField
[src]

default fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more

default fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if associativity holds for the given arguments.

impl<N, D, R> AbstractSemigroup<Multiplicative> for Similarity<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

default fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more

default fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if associativity holds for the given arguments.

impl<N, D> AbstractSemigroup<Multiplicative> for Matrix<N, D, D, <DefaultAllocator as Allocator<N, D, D>>::Buffer> where
    D: DimName,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N> + AbstractSemigroup<Multiplicative>,
    DefaultAllocator: Allocator<N, D, D>, 
[src]

default fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more

default fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if associativity holds for the given arguments.

impl<N, D, C> AbstractSemigroup<Multiplicative> for Transform<N, D, C> where
    C: TCategory,
    D: DimNameAdd<U1>,
    N: RealField,
    DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>, 
[src]

default fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more

default fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if associativity holds for the given arguments.

impl<N, D, R> AbstractSemigroup<Multiplicative> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

default fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more

default fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if associativity holds for the given arguments.

impl<N> AbstractSemigroup<Multiplicative> for Unit<Quaternion<N>> where
    N: RealField
[src]

default fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more

default fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if associativity holds for the given arguments.

impl<N> Identity<Multiplicative> for Quaternion<N> where
    N: RealField
[src]

default fn id(O) -> Self[src]

Specific identity.

impl<N> Identity<Multiplicative> for Unit<Quaternion<N>> where
    N: RealField
[src]

default fn id(O) -> Self[src]

Specific identity.

impl<N> Identity<Multiplicative> for Unit<Complex<N>> where
    N: RealField
[src]

default fn id(O) -> Self[src]

Specific identity.

impl<N, D, R> Identity<Multiplicative> for Similarity<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

default fn id(O) -> Self[src]

Specific identity.

impl<N, D> Identity<Multiplicative> for Translation<N, D> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

default fn id(O) -> Self[src]

Specific identity.

impl<N, D> Identity<Multiplicative> for Rotation<N, D> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, D>, 
[src]

default fn id(O) -> Self[src]

Specific identity.

impl<N, D, C> Identity<Multiplicative> for Transform<N, D, C> where
    C: TCategory,
    D: DimNameAdd<U1>,
    N: RealField,
    DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>, 
[src]

default fn id(O) -> Self[src]

Specific identity.

impl<N, D, R> Identity<Multiplicative> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

default fn id(O) -> Self[src]

Specific identity.

impl<N, D> Identity<Multiplicative> for Matrix<N, D, D, <DefaultAllocator as Allocator<N, D, D>>::Buffer> where
    D: DimName,
    N: Scalar + Zero + One,
    DefaultAllocator: Allocator<N, D, D>, 
[src]

default fn id(O) -> Self[src]

Specific identity.

impl<N> AbstractModule<Additive, Additive, Multiplicative> for Quaternion<N> where
    N: RealField
[src]

type AbstractRing = N

The underlying scalar field.

impl<N, R, C> AbstractModule<Additive, Additive, Multiplicative> for Matrix<N, R, C, <DefaultAllocator as Allocator<N, R, C>>::Buffer> where
    C: DimName,
    N: Scalar + RingCommutative,
    R: DimName,
    DefaultAllocator: Allocator<N, R, C>, 
[src]

type AbstractRing = N

The underlying scalar field.

impl<N, D, C> AbstractLoop<Multiplicative> for Transform<N, D, C> where
    C: SubTCategoryOf<TProjective>,
    D: DimNameAdd<U1>,
    N: RealField,
    DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>, 
[src]

impl<N, D> AbstractLoop<Multiplicative> for Translation<N, D> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N, D, R> AbstractLoop<Multiplicative> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N, D, R> AbstractLoop<Multiplicative> for Similarity<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N> AbstractLoop<Multiplicative> for Unit<Quaternion<N>> where
    N: RealField
[src]

impl<N> AbstractLoop<Multiplicative> for Unit<Complex<N>> where
    N: RealField
[src]

impl<N, D> AbstractLoop<Multiplicative> for Rotation<N, D> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, D>, 
[src]

impl<N, D> AbstractMagma<Multiplicative> for Translation<N, D> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

default fn op(&self, O, lhs: &Self) -> Self[src]

Performs specific operation.

impl<N, D> AbstractMagma<Multiplicative> for Matrix<N, D, D, <DefaultAllocator as Allocator<N, D, D>>::Buffer> where
    D: DimName,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N>,
    DefaultAllocator: Allocator<N, D, D>, 
[src]

default fn op(&self, O, lhs: &Self) -> Self[src]

Performs specific operation.

impl<N, D, C> AbstractMagma<Multiplicative> for Transform<N, D, C> where
    C: TCategory,
    D: DimNameAdd<U1>,
    N: RealField,
    DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>, 
[src]

default fn op(&self, O, lhs: &Self) -> Self[src]

Performs specific operation.

impl<N> AbstractMagma<Multiplicative> for Quaternion<N> where
    N: RealField
[src]

default fn op(&self, O, lhs: &Self) -> Self[src]

Performs specific operation.

impl<N, D> AbstractMagma<Multiplicative> for Rotation<N, D> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, D>, 
[src]

default fn op(&self, O, lhs: &Self) -> Self[src]

Performs specific operation.

impl<N, D, R> AbstractMagma<Multiplicative> for Similarity<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

default fn op(&self, O, lhs: &Self) -> Self[src]

Performs specific operation.

impl<N> AbstractMagma<Multiplicative> for Unit<Complex<N>> where
    N: RealField
[src]

default fn op(&self, O, lhs: &Self) -> Self[src]

Performs specific operation.

impl<N> AbstractMagma<Multiplicative> for Unit<Quaternion<N>> where
    N: RealField
[src]

default fn op(&self, O, lhs: &Self) -> Self[src]

Performs specific operation.

impl<N, D, R> AbstractMagma<Multiplicative> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

default fn op(&self, O, lhs: &Self) -> Self[src]

Performs specific operation.

impl<N, D> AbstractMonoid<Multiplicative> for Translation<N, D> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

default fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more

default fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq
[src]

Checks whether operating with the identity element is a no-op for the given argument. Read more

impl<N> AbstractMonoid<Multiplicative> for Unit<Complex<N>> where
    N: RealField
[src]

default fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more

default fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq
[src]

Checks whether operating with the identity element is a no-op for the given argument. Read more

impl<N> AbstractMonoid<Multiplicative> for Unit<Quaternion<N>> where
    N: RealField
[src]

default fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more

default fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq
[src]

Checks whether operating with the identity element is a no-op for the given argument. Read more

impl<N, D> AbstractMonoid<Multiplicative> for Rotation<N, D> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, D>, 
[src]

default fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more

default fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq
[src]

Checks whether operating with the identity element is a no-op for the given argument. Read more

impl<N, D, R> AbstractMonoid<Multiplicative> for Similarity<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

default fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more

default fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq
[src]

Checks whether operating with the identity element is a no-op for the given argument. Read more

impl<N> AbstractMonoid<Multiplicative> for Quaternion<N> where
    N: RealField
[src]

default fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more

default fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq
[src]

Checks whether operating with the identity element is a no-op for the given argument. Read more

impl<N, D, C> AbstractMonoid<Multiplicative> for Transform<N, D, C> where
    C: TCategory,
    D: DimNameAdd<U1>,
    N: RealField,
    DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>, 
[src]

default fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more

default fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq
[src]

Checks whether operating with the identity element is a no-op for the given argument. Read more

impl<N, D, R> AbstractMonoid<Multiplicative> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

default fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more

default fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq
[src]

Checks whether operating with the identity element is a no-op for the given argument. Read more

impl<N, D> AbstractMonoid<Multiplicative> for Matrix<N, D, D, <DefaultAllocator as Allocator<N, D, D>>::Buffer> where
    D: DimName,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N> + AbstractMonoid<Multiplicative> + One,
    DefaultAllocator: Allocator<N, D, D>, 
[src]

default fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more

default fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq
[src]

Checks whether operating with the identity element is a no-op for the given argument. Read more

impl<N, D> AbstractQuasigroup<Multiplicative> for Rotation<N, D> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, D>, 
[src]

default fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Returns true if latin squareness holds for the given arguments. Approximate equality is used for verifications. Read more

default fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if latin squareness holds for the given arguments. Read more

impl<N, D, C> AbstractQuasigroup<Multiplicative> for Transform<N, D, C> where
    C: SubTCategoryOf<TProjective>,
    D: DimNameAdd<U1>,
    N: RealField,
    DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>, 
[src]

default fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Returns true if latin squareness holds for the given arguments. Approximate equality is used for verifications. Read more

default fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if latin squareness holds for the given arguments. Read more

impl<N, D> AbstractQuasigroup<Multiplicative> for Translation<N, D> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

default fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Returns true if latin squareness holds for the given arguments. Approximate equality is used for verifications. Read more

default fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if latin squareness holds for the given arguments. Read more

impl<N, D, R> AbstractQuasigroup<Multiplicative> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

default fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Returns true if latin squareness holds for the given arguments. Approximate equality is used for verifications. Read more

default fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if latin squareness holds for the given arguments. Read more

impl<N> AbstractQuasigroup<Multiplicative> for Unit<Complex<N>> where
    N: RealField
[src]

default fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Returns true if latin squareness holds for the given arguments. Approximate equality is used for verifications. Read more

default fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if latin squareness holds for the given arguments. Read more

impl<N> AbstractQuasigroup<Multiplicative> for Unit<Quaternion<N>> where
    N: RealField
[src]

default fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Returns true if latin squareness holds for the given arguments. Approximate equality is used for verifications. Read more

default fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if latin squareness holds for the given arguments. Read more

impl<N, D, R> AbstractQuasigroup<Multiplicative> for Similarity<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

default fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Returns true if latin squareness holds for the given arguments. Approximate equality is used for verifications. Read more

default fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if latin squareness holds for the given arguments. Read more

impl<N> AbstractRingCommutative<Additive, Multiplicative> for Complex<N> where
    N: AbstractRingCommutative<Additive, Multiplicative> + ClosedNeg + Clone + Num
[src]

default fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Returns true if the multiplication operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more

default fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if the multiplication operator is commutative for the given argument tuple.

impl Copy for Multiplicative[src]

impl Clone for Multiplicative[src]

default fn clone_from(&mut self, source: &Self)
1.0.0
[src]

Performs copy-assignment from source. Read more

impl<N> AbstractGroup<Multiplicative> for Complex<N> where
    N: Num + Clone + ClosedNeg
[src]

impl<N> AbstractLoop<Multiplicative> for Complex<N> where
    N: Num + Clone + ClosedNeg
[src]

impl<N> TwoSidedInverse<Multiplicative> for Complex<N> where
    N: ClosedNeg + Clone + Num
[src]

default fn two_sided_inverse_mut(&mut self)[src]

In-place inversion of self, relative to the operator O. Read more

impl<N> AbstractModule<Additive, Additive, Multiplicative> for Complex<N> where
    N: AbstractRingCommutative<Additive, Multiplicative> + ClosedNeg + Num
[src]

type AbstractRing = N

The underlying scalar field.

impl<N> AbstractField<Additive, Multiplicative> for Complex<N> where
    N: AbstractField<Additive, Multiplicative> + ClosedNeg + Clone + Num
[src]

impl<N> AbstractQuasigroup<Multiplicative> for Complex<N> where
    N: Num + Clone + ClosedNeg
[src]

default fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Returns true if latin squareness holds for the given arguments. Approximate equality is used for verifications. Read more

default fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if latin squareness holds for the given arguments. Read more

impl<N> AbstractMagma<Multiplicative> for Complex<N> where
    N: Clone + Num
[src]

default fn op(&self, O, lhs: &Self) -> Self[src]

Performs specific operation.

impl Operator for Multiplicative[src]

impl Identity<Multiplicative> for f32[src]

default fn id(O) -> Self[src]

Specific identity.

impl Identity<Multiplicative> for i32[src]

default fn id(O) -> Self[src]

Specific identity.

impl Identity<Multiplicative> for i8[src]

default fn id(O) -> Self[src]

Specific identity.

impl Identity<Multiplicative> for u64[src]

default fn id(O) -> Self[src]

Specific identity.

impl Identity<Multiplicative> for isize[src]

default fn id(O) -> Self[src]

Specific identity.

impl Identity<Multiplicative> for u16[src]

default fn id(O) -> Self[src]

Specific identity.

impl Identity<Multiplicative> for i64[src]

default fn id(O) -> Self[src]

Specific identity.

impl Identity<Multiplicative> for i16[src]

default fn id(O) -> Self[src]

Specific identity.

impl<N> Identity<Multiplicative> for Complex<N> where
    N: Clone + Num
[src]

default fn id(O) -> Self[src]

Specific identity.

impl Identity<Multiplicative> for u32[src]

default fn id(O) -> Self[src]

Specific identity.

impl Identity<Multiplicative> for f64[src]

default fn id(O) -> Self[src]

Specific identity.

impl Identity<Multiplicative> for usize[src]

default fn id(O) -> Self[src]

Specific identity.

impl Identity<Multiplicative> for u8[src]

default fn id(O) -> Self[src]

Specific identity.

impl<N> AbstractRing<Additive, Multiplicative> for Complex<N> where
    N: AbstractRing<Additive, Multiplicative> + ClosedNeg + Clone + Num
[src]

default fn prop_mul_and_add_are_distributive_approx(
    args: (Self, Self, Self)
) -> bool where
    Self: RelativeEq<Self>, 
[src]

Returns true if the multiplication and addition operators are distributive for the given argument tuple. Approximate equality is used for verifications. Read more

default fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if the multiplication and addition operators are distributive for the given argument tuple. Read more

impl<N> AbstractGroupAbelian<Multiplicative> for Complex<N> where
    N: Num + Clone + ClosedNeg
[src]

default fn prop_is_commutative_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Returns true if the operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more

default fn prop_is_commutative(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if the operator is commutative for the given argument tuple.

impl<N> AbstractMonoid<Multiplicative> for Complex<N> where
    N: Num + Clone + ClosedNeg
[src]

default fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more

default fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq
[src]

Checks whether operating with the identity element is a no-op for the given argument. Read more

impl<N> AbstractSemigroup<Multiplicative> for Complex<N> where
    N: Num + Clone + ClosedNeg
[src]

default fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more

default fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if associativity holds for the given arguments.

Auto Trait Implementations

Blanket Implementations

impl<V> IntoVec for V[src]

impl<V> IntoPnt for V[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

impl<T> From for T[src]

impl<T, U> Into for T where
    U: From<T>, 
[src]

impl<T, U> TryFrom for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T> Borrow for T where
    T: ?Sized
[src]

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> BorrowMut for T where
    T: ?Sized
[src]

impl<T, U> TryInto for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<T> Same for T

type Output = T

Should always be Self

impl<SS, SP> SupersetOf for SP where
    SS: SubsetOf<SP>, 
[src]