[][src]Struct na::geometry::Point

#[repr(C)]
pub struct Point<N, D> where
    D: DimName,
    N: Scalar,
    DefaultAllocator: Allocator<N, D, U1>, 
{ pub coords: Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>, }

A point in a n-dimensional euclidean space.

Fields

coords: Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>

The coordinates of this point, i.e., the shift from the origin.

Methods

impl<N, D> Point<N, D> where
    D: DimName,
    N: Scalar,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

pub fn to_homogeneous(
    &self
) -> Matrix<N, <D as DimNameAdd<U1>>::Output, U1, <DefaultAllocator as Allocator<N, <D as DimNameAdd<U1>>::Output, U1>>::Buffer> where
    D: DimNameAdd<U1>,
    N: One,
    DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, U1>, 
[src]

Converts this point into a vector in homogeneous coordinates, i.e., appends a 1 at the end of it.

This is the same as .into().

Example

let p = Point2::new(10.0, 20.0);
assert_eq!(p.to_homogeneous(), Vector3::new(10.0, 20.0, 1.0));

// This works in any dimension.
let p = Point3::new(10.0, 20.0, 30.0);
assert_eq!(p.to_homogeneous(), Vector4::new(10.0, 20.0, 30.0, 1.0));

pub fn from_coordinates(
    coords: Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>
) -> Point<N, D>
[src]

Deprecated:

Use Point::from(vector) instead.

Creates a new point with the given coordinates.

pub fn len(&self) -> usize[src]

The dimension of this point.

Example

let p = Point2::new(1.0, 2.0);
assert_eq!(p.len(), 2);

// This works in any dimension.
let p = Point3::new(10.0, 20.0, 30.0);
assert_eq!(p.len(), 3);

pub fn stride(&self) -> usize[src]

Deprecated:

This methods is no longer significant and will always return 1.

The stride of this point. This is the number of buffer element separating each component of this point.

Important traits for MatrixIter<'a, N, R, C, S>
pub fn iter(
    &self
) -> MatrixIter<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>
[src]

Iterates through this point coordinates.

Example

let p = Point3::new(1.0, 2.0, 3.0);
let mut it = p.iter().cloned();

assert_eq!(it.next(), Some(1.0));
assert_eq!(it.next(), Some(2.0));
assert_eq!(it.next(), Some(3.0));
assert_eq!(it.next(), None);

pub unsafe fn get_unchecked(&self, i: usize) -> &N[src]

Gets a reference to i-th element of this point without bound-checking.

Important traits for MatrixIterMut<'a, N, R, C, S>
pub fn iter_mut(
    &mut self
) -> MatrixIterMut<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>
[src]

Mutably iterates through this point coordinates.

Example

let mut p = Point3::new(1.0, 2.0, 3.0);

for e in p.iter_mut() {
    *e *= 10.0;
}

assert_eq!(p, Point3::new(10.0, 20.0, 30.0));

pub unsafe fn get_unchecked_mut(&mut self, i: usize) -> &mut N[src]

Gets a mutable reference to i-th element of this point without bound-checking.

pub unsafe fn swap_unchecked(&mut self, i1: usize, i2: usize)[src]

Swaps two entries without bound-checking.

impl<N, D> Point<N, D> where
    D: DimName,
    N: Scalar,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

pub unsafe fn new_uninitialized() -> Point<N, D>[src]

Creates a new point with uninitialized coordinates.

pub fn origin() -> Point<N, D> where
    N: Zero
[src]

Creates a new point with all coordinates equal to zero.

Example

// This works in any dimension.
// The explicit crate::<f32> type annotation may not always be needed,
// depending on the context of type inference.
let pt = Point2::<f32>::origin();
assert!(pt.x == 0.0 && pt.y == 0.0);

let pt = Point3::<f32>::origin();
assert!(pt.x == 0.0 && pt.y == 0.0 && pt.z == 0.0);

pub fn from_slice(components: &[N]) -> Point<N, D>[src]

Creates a new point from a slice.

Example

let data = [ 1.0, 2.0, 3.0 ];

let pt = Point2::from_slice(&data[..2]);
assert_eq!(pt, Point2::new(1.0, 2.0));

let pt = Point3::from_slice(&data);
assert_eq!(pt, Point3::new(1.0, 2.0, 3.0));

pub fn from_homogeneous(
    v: Matrix<N, <D as DimNameAdd<U1>>::Output, U1, <DefaultAllocator as Allocator<N, <D as DimNameAdd<U1>>::Output, U1>>::Buffer>
) -> Option<Point<N, D>> where
    D: DimNameAdd<U1>,
    N: Scalar + Zero + One + ClosedDiv<N>,
    DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, U1>, 
[src]

Creates a new point from its homogeneous vector representation.

In practice, this builds a D-dimensional points with the same first D component as v divided by the last component of v. Returns None if this divisor is zero.

Example

let coords = Vector4::new(1.0, 2.0, 3.0, 1.0);
let pt = Point3::from_homogeneous(coords);
assert_eq!(pt, Some(Point3::new(1.0, 2.0, 3.0)));

// All component of the result will be divided by the
// last component of the vector, here 2.0.
let coords = Vector4::new(1.0, 2.0, 3.0, 2.0);
let pt = Point3::from_homogeneous(coords);
assert_eq!(pt, Some(Point3::new(0.5, 1.0, 1.5)));

// Fails because the last component is zero.
let coords = Vector4::new(1.0, 2.0, 3.0, 0.0);
let pt = Point3::from_homogeneous(coords);
assert!(pt.is_none());

// Works also in other dimensions.
let coords = Vector3::new(1.0, 2.0, 1.0);
let pt = Point2::from_homogeneous(coords);
assert_eq!(pt, Some(Point2::new(1.0, 2.0)));

impl<N> Point<N, U1> where
    N: Scalar,
    DefaultAllocator: Allocator<N, U1, U1>, 
[src]

pub fn new(x: N) -> Point<N, U1>[src]

Initializes this point from its components.

Example

let p = Point1::new(1.0);
assert!(p.x == 1.0);

impl<N> Point<N, U2> where
    N: Scalar,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

pub fn new(x: N, y: N) -> Point<N, U2>[src]

Initializes this point from its components.

Example

let p = Point2::new(1.0, 2.0);
assert!(p.x == 1.0 && p.y == 2.0);

impl<N> Point<N, U3> where
    N: Scalar,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

pub fn new(x: N, y: N, z: N) -> Point<N, U3>[src]

Initializes this point from its components.

Example

let p = Point3::new(1.0, 2.0, 3.0);
assert!(p.x == 1.0 && p.y == 2.0 && p.z == 3.0);

impl<N> Point<N, U4> where
    N: Scalar,
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

pub fn new(x: N, y: N, z: N, w: N) -> Point<N, U4>[src]

Initializes this point from its components.

Example

let p = Point4::new(1.0, 2.0, 3.0, 4.0);
assert!(p.x == 1.0 && p.y == 2.0 && p.z == 3.0 && p.w == 4.0);

impl<N> Point<N, U5> where
    N: Scalar,
    DefaultAllocator: Allocator<N, U5, U1>, 
[src]

pub fn new(x: N, y: N, z: N, w: N, a: N) -> Point<N, U5>[src]

Initializes this point from its components.

Example

let p = Point5::new(1.0, 2.0, 3.0, 4.0, 5.0);
assert!(p.x == 1.0 && p.y == 2.0 && p.z == 3.0 && p.w == 4.0 && p.a == 5.0);

impl<N> Point<N, U6> where
    N: Scalar,
    DefaultAllocator: Allocator<N, U6, U1>, 
[src]

pub fn new(x: N, y: N, z: N, w: N, a: N, b: N) -> Point<N, U6>[src]

Initializes this point from its components.

Example

let p = Point6::new(1.0, 2.0, 3.0, 4.0, 5.0, 6.0);
assert!(p.x == 1.0 && p.y == 2.0 && p.z == 3.0 && p.w == 4.0 && p.a == 5.0 && p.b == 6.0);

impl<N, D> Point<N, D> where
    D: DimName,
    N: Scalar,
    DefaultAllocator: Allocator<N, D, U1>,
    <D as DimName>::Value: Cmp<UTerm>,
    <<D as DimName>::Value as Cmp<UTerm>>::Output == Greater, 
[src]

pub fn xx(&self) -> Point<N, U2>[src]

Builds a new point from components of self.

pub fn xxx(&self) -> Point<N, U3>[src]

Builds a new point from components of self.

impl<N, D> Point<N, D> where
    D: DimName,
    N: Scalar,
    DefaultAllocator: Allocator<N, D, U1>,
    <D as DimName>::Value: Cmp<UInt<UTerm, B1>>,
    <<D as DimName>::Value as Cmp<UInt<UTerm, B1>>>::Output == Greater, 
[src]

pub fn xy(&self) -> Point<N, U2>[src]

Builds a new point from components of self.

pub fn yx(&self) -> Point<N, U2>[src]

Builds a new point from components of self.

pub fn yy(&self) -> Point<N, U2>[src]

Builds a new point from components of self.

pub fn xxy(&self) -> Point<N, U3>[src]

Builds a new point from components of self.

pub fn xyx(&self) -> Point<N, U3>[src]

Builds a new point from components of self.

pub fn xyy(&self) -> Point<N, U3>[src]

Builds a new point from components of self.

pub fn yxx(&self) -> Point<N, U3>[src]

Builds a new point from components of self.

pub fn yxy(&self) -> Point<N, U3>[src]

Builds a new point from components of self.

pub fn yyx(&self) -> Point<N, U3>[src]

Builds a new point from components of self.

pub fn yyy(&self) -> Point<N, U3>[src]

Builds a new point from components of self.

impl<N, D> Point<N, D> where
    D: DimName,
    N: Scalar,
    DefaultAllocator: Allocator<N, D, U1>,
    <D as DimName>::Value: Cmp<UInt<UInt<UTerm, B1>, B0>>,
    <<D as DimName>::Value as Cmp<UInt<UInt<UTerm, B1>, B0>>>::Output == Greater, 
[src]

pub fn xz(&self) -> Point<N, U2>[src]

Builds a new point from components of self.

pub fn yz(&self) -> Point<N, U2>[src]

Builds a new point from components of self.

pub fn zx(&self) -> Point<N, U2>[src]

Builds a new point from components of self.

pub fn zy(&self) -> Point<N, U2>[src]

Builds a new point from components of self.

pub fn zz(&self) -> Point<N, U2>[src]

Builds a new point from components of self.

pub fn xxz(&self) -> Point<N, U3>[src]

Builds a new point from components of self.

pub fn xyz(&self) -> Point<N, U3>[src]

Builds a new point from components of self.

pub fn xzx(&self) -> Point<N, U3>[src]

Builds a new point from components of self.

pub fn xzy(&self) -> Point<N, U3>[src]

Builds a new point from components of self.

pub fn xzz(&self) -> Point<N, U3>[src]

Builds a new point from components of self.

pub fn yxz(&self) -> Point<N, U3>[src]

Builds a new point from components of self.

pub fn yyz(&self) -> Point<N, U3>[src]

Builds a new point from components of self.

pub fn yzx(&self) -> Point<N, U3>[src]

Builds a new point from components of self.

pub fn yzy(&self) -> Point<N, U3>[src]

Builds a new point from components of self.

pub fn yzz(&self) -> Point<N, U3>[src]

Builds a new point from components of self.

pub fn zxx(&self) -> Point<N, U3>[src]

Builds a new point from components of self.

pub fn zxy(&self) -> Point<N, U3>[src]

Builds a new point from components of self.

pub fn zxz(&self) -> Point<N, U3>[src]

Builds a new point from components of self.

pub fn zyx(&self) -> Point<N, U3>[src]

Builds a new point from components of self.

pub fn zyy(&self) -> Point<N, U3>[src]

Builds a new point from components of self.

pub fn zyz(&self) -> Point<N, U3>[src]

Builds a new point from components of self.

pub fn zzx(&self) -> Point<N, U3>[src]

Builds a new point from components of self.

pub fn zzy(&self) -> Point<N, U3>[src]

Builds a new point from components of self.

pub fn zzz(&self) -> Point<N, U3>[src]

Builds a new point from components of self.

Trait Implementations

impl<N, D, R> AffineTransformation<Point<N, D>> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Rotation = R

Type of the first rotation to be applied.

type NonUniformScaling = Id<Multiplicative>

Type of the non-uniform scaling to be applied.

type Translation = Translation<N, D>

The type of the pure translation part of this affine transformation.

impl<N> AffineTransformation<Point<N, U3>> for Unit<Quaternion<N>> where
    N: RealField
[src]

type Rotation = Unit<Quaternion<N>>

Type of the first rotation to be applied.

type NonUniformScaling = Id<Multiplicative>

Type of the non-uniform scaling to be applied.

type Translation = Id<Multiplicative>

The type of the pure translation part of this affine transformation.

default fn append_rotation_wrt_point(
    &self,
    r: &Self::Rotation,
    p: &E
) -> Option<Self>
[src]

Appends to this similarity a rotation centered at the point p, i.e., this point is left invariant. Read more

impl<N, D, R> AffineTransformation<Point<N, D>> for Similarity<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type NonUniformScaling = N

Type of the non-uniform scaling to be applied.

type Rotation = R

Type of the first rotation to be applied.

type Translation = Translation<N, D>

The type of the pure translation part of this affine transformation.

impl<N, D> AffineTransformation<Point<N, D>> for Rotation<N, D> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, D>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Rotation = Rotation<N, D>

Type of the first rotation to be applied.

type NonUniformScaling = Id<Multiplicative>

Type of the non-uniform scaling to be applied.

type Translation = Id<Multiplicative>

The type of the pure translation part of this affine transformation.

default fn append_rotation_wrt_point(
    &self,
    r: &Self::Rotation,
    p: &E
) -> Option<Self>
[src]

Appends to this similarity a rotation centered at the point p, i.e., this point is left invariant. Read more

impl<N, D> AffineTransformation<Point<N, D>> for Translation<N, D> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Rotation = Id<Multiplicative>

Type of the first rotation to be applied.

type NonUniformScaling = Id<Multiplicative>

Type of the non-uniform scaling to be applied.

type Translation = Translation<N, D>

The type of the pure translation part of this affine transformation.

default fn append_rotation_wrt_point(
    &self,
    r: &Self::Rotation,
    p: &E
) -> Option<Self>
[src]

Appends to this similarity a rotation centered at the point p, i.e., this point is left invariant. Read more

impl<N> AffineTransformation<Point<N, U2>> for Unit<Complex<N>> where
    N: RealField,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

type Rotation = Unit<Complex<N>>

Type of the first rotation to be applied.

type NonUniformScaling = Id<Multiplicative>

Type of the non-uniform scaling to be applied.

type Translation = Id<Multiplicative>

The type of the pure translation part of this affine transformation.

default fn append_rotation_wrt_point(
    &self,
    r: &Self::Rotation,
    p: &E
) -> Option<Self>
[src]

Appends to this similarity a rotation centered at the point p, i.e., this point is left invariant. Read more

impl<'b, N, D1, D2, SB> AddAssign<&'b Matrix<N, D2, U1, SB>> for Point<N, D1> where
    D1: DimName,
    D2: Dim,
    N: Scalar + ClosedAdd<N>,
    SB: Storage<N, D2, U1>,
    DefaultAllocator: Allocator<N, D1, U1>,
    ShapeConstraint: SameNumberOfRows<D1, D2>, 
[src]

impl<N, D1, D2, SB> AddAssign<Matrix<N, D2, U1, SB>> for Point<N, D1> where
    D1: DimName,
    D2: Dim,
    N: Scalar + ClosedAdd<N>,
    SB: Storage<N, D2, U1>,
    DefaultAllocator: Allocator<N, D1, U1>,
    ShapeConstraint: SameNumberOfRows<D1, D2>, 
[src]

impl<N, D> MulAssign<N> for Point<N, D> where
    D: DimName,
    N: Scalar + ClosedMul<N>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N, D> AbsDiffEq<Point<N, D>> for Point<N, D> where
    D: DimName,
    N: Scalar + AbsDiffEq<N>,
    DefaultAllocator: Allocator<N, D, U1>,
    <N as AbsDiffEq<N>>::Epsilon: Copy
[src]

type Epsilon = <N as AbsDiffEq<N>>::Epsilon

Used for specifying relative comparisons.

default fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool

The inverse of ApproxEq::abs_diff_eq.

impl<N, D> Copy for Point<N, D> where
    D: DimName,
    N: Scalar,
    DefaultAllocator: Allocator<N, D, U1>,
    <DefaultAllocator as Allocator<N, D, U1>>::Buffer: Copy
[src]

impl<N, D> Clone for Point<N, D> where
    D: DimName + Clone,
    N: Scalar + Clone,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

default fn clone_from(&mut self, source: &Self)
1.0.0
[src]

Performs copy-assignment from source. Read more

impl<N, D> DirectIsometry<Point<N, D>> for Rotation<N, D> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, D>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N> DirectIsometry<Point<N, U3>> for Unit<Quaternion<N>> where
    N: RealField
[src]

impl<N> DirectIsometry<Point<N, U2>> for Unit<Complex<N>> where
    N: RealField,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

impl<N, D, R> DirectIsometry<Point<N, D>> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N, D> DirectIsometry<Point<N, D>> for Translation<N, D> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N, D> EuclideanSpace for Point<N, D> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Coordinates = Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>

The underlying finite vector space.

type RealField = N

The underlying reals.

default fn distance_squared(&self, b: &Self) -> Self::RealField[src]

The distance between two points.

default fn distance(&self, b: &Self) -> Self::RealField[src]

The distance between two points.

impl<N, D> PartialEq<Point<N, D>> for Point<N, D> where
    D: DimName,
    N: Scalar,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

#[must_use]
default fn ne(&self, other: &Rhs) -> bool
1.0.0
[src]

This method tests for !=.

impl<N, D> RelativeEq<Point<N, D>> for Point<N, D> where
    D: DimName,
    N: Scalar + RelativeEq<N>,
    DefaultAllocator: Allocator<N, D, U1>,
    <N as AbsDiffEq<N>>::Epsilon: Copy
[src]

default fn relative_ne(
    &self,
    other: &Rhs,
    epsilon: Self::Epsilon,
    max_relative: Self::Epsilon
) -> bool

The inverse of ApproxEq::relative_eq.

impl<N, D> DivAssign<N> for Point<N, D> where
    D: DimName,
    N: Scalar + ClosedDiv<N>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<'a, N, D> Neg for &'a Point<N, D> where
    D: DimName,
    N: Scalar + ClosedNeg,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Point<N, D>

The resulting type after applying the - operator.

impl<N, D> Neg for Point<N, D> where
    D: DimName,
    N: Scalar + ClosedNeg,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Point<N, D>

The resulting type after applying the - operator.

impl<N, D> ProjectiveTransformation<Point<N, D>> for Translation<N, D> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N, D, R> ProjectiveTransformation<Point<N, D>> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N> ProjectiveTransformation<Point<N, U2>> for Unit<Complex<N>> where
    N: RealField,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

impl<N, D> ProjectiveTransformation<Point<N, D>> for Rotation<N, D> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, D>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N, D, C> ProjectiveTransformation<Point<N, D>> for Transform<N, D, C> where
    C: SubTCategoryOf<TProjective>,
    D: DimNameAdd<U1>,
    N: RealField,
    DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>,
    DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, U1>,
    DefaultAllocator: Allocator<N, D, D>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N, D, R> ProjectiveTransformation<Point<N, D>> for Similarity<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N> ProjectiveTransformation<Point<N, U3>> for Unit<Quaternion<N>> where
    N: RealField
[src]

impl<N, D> PartialOrd<Point<N, D>> for Point<N, D> where
    D: DimName,
    N: Scalar + PartialOrd<N>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N, D> Similarity<Point<N, D>> for Translation<N, D> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Scaling = Id<Multiplicative>

The type of the pure (uniform) scaling part of this similarity transformation.

default fn translate_point(&self, pt: &E) -> E[src]

Applies this transformation's pure translational part to a point.

default fn rotate_point(&self, pt: &E) -> E[src]

Applies this transformation's pure rotational part to a point.

default fn scale_point(&self, pt: &E) -> E[src]

Applies this transformation's pure scaling part to a point.

default fn rotate_vector(
    &self,
    pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]

Applies this transformation's pure rotational part to a vector.

default fn scale_vector(
    &self,
    pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]

Applies this transformation's pure scaling part to a vector.

default fn inverse_translate_point(&self, pt: &E) -> E[src]

Applies this transformation inverse's pure translational part to a point.

default fn inverse_rotate_point(&self, pt: &E) -> E[src]

Applies this transformation inverse's pure rotational part to a point.

default fn inverse_scale_point(&self, pt: &E) -> E[src]

Applies this transformation inverse's pure scaling part to a point.

default fn inverse_rotate_vector(
    &self,
    pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]

Applies this transformation inverse's pure rotational part to a vector.

default fn inverse_scale_vector(
    &self,
    pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]

Applies this transformation inverse's pure scaling part to a vector.

impl<N, D, R> Similarity<Point<N, D>> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Scaling = Id<Multiplicative>

The type of the pure (uniform) scaling part of this similarity transformation.

default fn translate_point(&self, pt: &E) -> E[src]

Applies this transformation's pure translational part to a point.

default fn rotate_point(&self, pt: &E) -> E[src]

Applies this transformation's pure rotational part to a point.

default fn scale_point(&self, pt: &E) -> E[src]

Applies this transformation's pure scaling part to a point.

default fn rotate_vector(
    &self,
    pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]

Applies this transformation's pure rotational part to a vector.

default fn scale_vector(
    &self,
    pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]

Applies this transformation's pure scaling part to a vector.

default fn inverse_translate_point(&self, pt: &E) -> E[src]

Applies this transformation inverse's pure translational part to a point.

default fn inverse_rotate_point(&self, pt: &E) -> E[src]

Applies this transformation inverse's pure rotational part to a point.

default fn inverse_scale_point(&self, pt: &E) -> E[src]

Applies this transformation inverse's pure scaling part to a point.

default fn inverse_rotate_vector(
    &self,
    pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]

Applies this transformation inverse's pure rotational part to a vector.

default fn inverse_scale_vector(
    &self,
    pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]

Applies this transformation inverse's pure scaling part to a vector.

impl<N> Similarity<Point<N, U2>> for Unit<Complex<N>> where
    N: RealField,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

type Scaling = Id<Multiplicative>

The type of the pure (uniform) scaling part of this similarity transformation.

default fn translate_point(&self, pt: &E) -> E[src]

Applies this transformation's pure translational part to a point.

default fn rotate_point(&self, pt: &E) -> E[src]

Applies this transformation's pure rotational part to a point.

default fn scale_point(&self, pt: &E) -> E[src]

Applies this transformation's pure scaling part to a point.

default fn rotate_vector(
    &self,
    pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]

Applies this transformation's pure rotational part to a vector.

default fn scale_vector(
    &self,
    pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]

Applies this transformation's pure scaling part to a vector.

default fn inverse_translate_point(&self, pt: &E) -> E[src]

Applies this transformation inverse's pure translational part to a point.

default fn inverse_rotate_point(&self, pt: &E) -> E[src]

Applies this transformation inverse's pure rotational part to a point.

default fn inverse_scale_point(&self, pt: &E) -> E[src]

Applies this transformation inverse's pure scaling part to a point.

default fn inverse_rotate_vector(
    &self,
    pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]

Applies this transformation inverse's pure rotational part to a vector.

default fn inverse_scale_vector(
    &self,
    pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]

Applies this transformation inverse's pure scaling part to a vector.

impl<N, D, R> Similarity<Point<N, D>> for Similarity<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Scaling = N

The type of the pure (uniform) scaling part of this similarity transformation.

default fn translate_point(&self, pt: &E) -> E[src]

Applies this transformation's pure translational part to a point.

default fn rotate_point(&self, pt: &E) -> E[src]

Applies this transformation's pure rotational part to a point.

default fn scale_point(&self, pt: &E) -> E[src]

Applies this transformation's pure scaling part to a point.

default fn rotate_vector(
    &self,
    pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]

Applies this transformation's pure rotational part to a vector.

default fn scale_vector(
    &self,
    pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]

Applies this transformation's pure scaling part to a vector.

default fn inverse_translate_point(&self, pt: &E) -> E[src]

Applies this transformation inverse's pure translational part to a point.

default fn inverse_rotate_point(&self, pt: &E) -> E[src]

Applies this transformation inverse's pure rotational part to a point.

default fn inverse_scale_point(&self, pt: &E) -> E[src]

Applies this transformation inverse's pure scaling part to a point.

default fn inverse_rotate_vector(
    &self,
    pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]

Applies this transformation inverse's pure rotational part to a vector.

default fn inverse_scale_vector(
    &self,
    pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]

Applies this transformation inverse's pure scaling part to a vector.

impl<N> Similarity<Point<N, U3>> for Unit<Quaternion<N>> where
    N: RealField
[src]

type Scaling = Id<Multiplicative>

The type of the pure (uniform) scaling part of this similarity transformation.

default fn translate_point(&self, pt: &E) -> E[src]

Applies this transformation's pure translational part to a point.

default fn rotate_point(&self, pt: &E) -> E[src]

Applies this transformation's pure rotational part to a point.

default fn scale_point(&self, pt: &E) -> E[src]

Applies this transformation's pure scaling part to a point.

default fn rotate_vector(
    &self,
    pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]

Applies this transformation's pure rotational part to a vector.

default fn scale_vector(
    &self,
    pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]

Applies this transformation's pure scaling part to a vector.

default fn inverse_translate_point(&self, pt: &E) -> E[src]

Applies this transformation inverse's pure translational part to a point.

default fn inverse_rotate_point(&self, pt: &E) -> E[src]

Applies this transformation inverse's pure rotational part to a point.

default fn inverse_scale_point(&self, pt: &E) -> E[src]

Applies this transformation inverse's pure scaling part to a point.

default fn inverse_rotate_vector(
    &self,
    pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]

Applies this transformation inverse's pure rotational part to a vector.

default fn inverse_scale_vector(
    &self,
    pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]

Applies this transformation inverse's pure scaling part to a vector.

impl<N, D> Similarity<Point<N, D>> for Rotation<N, D> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, D>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Scaling = Id<Multiplicative>

The type of the pure (uniform) scaling part of this similarity transformation.

default fn translate_point(&self, pt: &E) -> E[src]

Applies this transformation's pure translational part to a point.

default fn rotate_point(&self, pt: &E) -> E[src]

Applies this transformation's pure rotational part to a point.

default fn scale_point(&self, pt: &E) -> E[src]

Applies this transformation's pure scaling part to a point.

default fn rotate_vector(
    &self,
    pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]

Applies this transformation's pure rotational part to a vector.

default fn scale_vector(
    &self,
    pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]

Applies this transformation's pure scaling part to a vector.

default fn inverse_translate_point(&self, pt: &E) -> E[src]

Applies this transformation inverse's pure translational part to a point.

default fn inverse_rotate_point(&self, pt: &E) -> E[src]

Applies this transformation inverse's pure rotational part to a point.

default fn inverse_scale_point(&self, pt: &E) -> E[src]

Applies this transformation inverse's pure scaling part to a point.

default fn inverse_rotate_vector(
    &self,
    pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]

Applies this transformation inverse's pure rotational part to a vector.

default fn inverse_scale_vector(
    &self,
    pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]

Applies this transformation inverse's pure scaling part to a vector.

impl<N, D, R> Mul<Point<N, D>> for Similarity<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<N> Mul<Point<N, U3>> for Unit<Quaternion<N>> where
    N: RealField,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

type Output = Point<N, U3>

The resulting type after applying the * operator.

impl<N, D> Mul<N> for Point<N, D> where
    D: DimName,
    N: Scalar + ClosedMul<N>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'b, N, D> Mul<&'b Point<N, D>> for Translation<N, D> where
    D: DimName,
    N: Scalar + ClosedAdd<N>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: SameShapeAllocator<N, D, U1, D, U1>,
    ShapeConstraint: SameNumberOfRows<D, D>,
    ShapeConstraint: SameNumberOfColumns<U1, U1>,
    <ShapeConstraint as SameNumberOfRows<D, D>>::Representative == D, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'a, N, D, C> Mul<Point<N, D>> for &'a Transform<N, D, C> where
    C: TCategory,
    D: DimNameAdd<U1>,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N> + RealField,
    DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, U1>,
    DefaultAllocator: Allocator<N, D, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'b, N, D> Mul<&'b Point<N, D>> for Rotation<N, D> where
    D: DimName,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N>,
    DefaultAllocator: Allocator<N, D, D>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, D, U1>,
    ShapeConstraint: AreMultipliable<D, D, D, U1>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'a, 'b, N> Mul<&'b Point<N, U2>> for &'a Unit<Complex<N>> where
    N: RealField,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

type Output = Point<N, U2>

The resulting type after applying the * operator.

impl<'b, N, D, R> Mul<&'b Point<N, D>> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'a, 'b, N> Mul<&'b Point<N, U3>> for &'a Unit<Quaternion<N>> where
    N: RealField,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

type Output = Point<N, U3>

The resulting type after applying the * operator.

impl<N> Mul<Point<N, U2>> for Unit<Complex<N>> where
    N: RealField,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

type Output = Point<N, U2>

The resulting type after applying the * operator.

impl<N, D> Mul<Point<N, D>> for Rotation<N, D> where
    D: DimName,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N>,
    DefaultAllocator: Allocator<N, D, D>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, D, U1>,
    ShapeConstraint: AreMultipliable<D, D, D, U1>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'b, N, R1, C1, D2, SA> Mul<&'b Point<N, D2>> for Matrix<N, R1, C1, SA> where
    C1: Dim,
    D2: DimName,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N>,
    R1: DimName,
    SA: Storage<N, R1, C1>,
    DefaultAllocator: Allocator<N, R1, C1>,
    DefaultAllocator: Allocator<N, D2, U1>,
    DefaultAllocator: Allocator<N, R1, U1>,
    ShapeConstraint: AreMultipliable<R1, C1, D2, U1>, 
[src]

type Output = Point<N, R1>

The resulting type after applying the * operator.

impl<'a, N, D, R> Mul<Point<N, D>> for &'a Similarity<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<N, D, R> Mul<Point<N, D>> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'a, 'b, N, D, R> Mul<&'b Point<N, D>> for &'a Similarity<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'a, N, R1, C1, D2, SA> Mul<Point<N, D2>> for &'a Matrix<N, R1, C1, SA> where
    C1: Dim,
    D2: DimName,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N>,
    R1: DimName,
    SA: Storage<N, R1, C1>,
    DefaultAllocator: Allocator<N, R1, C1>,
    DefaultAllocator: Allocator<N, D2, U1>,
    DefaultAllocator: Allocator<N, R1, U1>,
    ShapeConstraint: AreMultipliable<R1, C1, D2, U1>, 
[src]

type Output = Point<N, R1>

The resulting type after applying the * operator.

impl<'a, N, D, R> Mul<Point<N, D>> for &'a Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'b, N, D, C> Mul<&'b Point<N, D>> for Transform<N, D, C> where
    C: TCategory,
    D: DimNameAdd<U1>,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N> + RealField,
    DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, U1>,
    DefaultAllocator: Allocator<N, D, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<N, D, C> Mul<Point<N, D>> for Transform<N, D, C> where
    C: TCategory,
    D: DimNameAdd<U1>,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N> + RealField,
    DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, U1>,
    DefaultAllocator: Allocator<N, D, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<N, D> Mul<Point<N, D>> for Translation<N, D> where
    D: DimName,
    N: Scalar + ClosedAdd<N>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: SameShapeAllocator<N, D, U1, D, U1>,
    ShapeConstraint: SameNumberOfRows<D, D>,
    ShapeConstraint: SameNumberOfColumns<U1, U1>,
    <ShapeConstraint as SameNumberOfRows<D, D>>::Representative == D, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'a, N, D> Mul<Point<N, D>> for &'a Rotation<N, D> where
    D: DimName,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N>,
    DefaultAllocator: Allocator<N, D, D>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, D, U1>,
    ShapeConstraint: AreMultipliable<D, D, D, U1>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'a, 'b, N, D> Mul<&'b Point<N, D>> for &'a Rotation<N, D> where
    D: DimName,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N>,
    DefaultAllocator: Allocator<N, D, D>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, D, U1>,
    ShapeConstraint: AreMultipliable<D, D, D, U1>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'b, N> Mul<&'b Point<N, U3>> for Unit<Quaternion<N>> where
    N: RealField,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

type Output = Point<N, U3>

The resulting type after applying the * operator.

impl<'a, 'b, N, D, C> Mul<&'b Point<N, D>> for &'a Transform<N, D, C> where
    C: TCategory,
    D: DimNameAdd<U1>,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N> + RealField,
    DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, U1>,
    DefaultAllocator: Allocator<N, D, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<N, R1, C1, D2, SA> Mul<Point<N, D2>> for Matrix<N, R1, C1, SA> where
    C1: Dim,
    D2: DimName,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N>,
    R1: DimName,
    SA: Storage<N, R1, C1>,
    DefaultAllocator: Allocator<N, R1, C1>,
    DefaultAllocator: Allocator<N, D2, U1>,
    DefaultAllocator: Allocator<N, R1, U1>,
    ShapeConstraint: AreMultipliable<R1, C1, D2, U1>, 
[src]

type Output = Point<N, R1>

The resulting type after applying the * operator.

impl<'a, N> Mul<Point<N, U3>> for &'a Unit<Quaternion<N>> where
    N: RealField,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

type Output = Point<N, U3>

The resulting type after applying the * operator.

impl<'b, N> Mul<&'b Point<N, U2>> for Unit<Complex<N>> where
    N: RealField,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

type Output = Point<N, U2>

The resulting type after applying the * operator.

impl<'a, 'b, N, D, R> Mul<&'b Point<N, D>> for &'a Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'a, 'b, N, D> Mul<&'b Point<N, D>> for &'a Translation<N, D> where
    D: DimName,
    N: Scalar + ClosedAdd<N>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: SameShapeAllocator<N, D, U1, D, U1>,
    ShapeConstraint: SameNumberOfRows<D, D>,
    ShapeConstraint: SameNumberOfColumns<U1, U1>,
    <ShapeConstraint as SameNumberOfRows<D, D>>::Representative == D, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'b, N, D, R> Mul<&'b Point<N, D>> for Similarity<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'a, 'b, N, R1, C1, D2, SA> Mul<&'b Point<N, D2>> for &'a Matrix<N, R1, C1, SA> where
    C1: Dim,
    D2: DimName,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N>,
    R1: DimName,
    SA: Storage<N, R1, C1>,
    DefaultAllocator: Allocator<N, R1, C1>,
    DefaultAllocator: Allocator<N, D2, U1>,
    DefaultAllocator: Allocator<N, R1, U1>,
    ShapeConstraint: AreMultipliable<R1, C1, D2, U1>, 
[src]

type Output = Point<N, R1>

The resulting type after applying the * operator.

impl<'a, N, D> Mul<Point<N, D>> for &'a Translation<N, D> where
    D: DimName,
    N: Scalar + ClosedAdd<N>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: SameShapeAllocator<N, D, U1, D, U1>,
    ShapeConstraint: SameNumberOfRows<D, D>,
    ShapeConstraint: SameNumberOfColumns<U1, U1>,
    <ShapeConstraint as SameNumberOfRows<D, D>>::Representative == D, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'a, N> Mul<Point<N, U2>> for &'a Unit<Complex<N>> where
    N: RealField,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

type Output = Point<N, U2>

The resulting type after applying the * operator.

impl<'a, N, D> Mul<N> for &'a Point<N, D> where
    D: DimName,
    N: Scalar + ClosedMul<N>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<N, D> MeetSemilattice for Point<N, D> where
    D: DimName,
    N: Scalar + MeetSemilattice,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N, D> Display for Point<N, D> where
    D: DimName,
    N: Scalar + Display,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N, D> Debug for Point<N, D> where
    D: DimName + Debug,
    N: Scalar + Debug,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N, D> Hash for Point<N, D> where
    D: DimName + Hash,
    N: Scalar + Hash,
    DefaultAllocator: Allocator<N, D, U1>,
    <DefaultAllocator as Allocator<N, D, U1>>::Buffer: Hash
[src]

default fn hash_slice<H>(data: &[Self], state: &mut H) where
    H: Hasher
1.3.0
[src]

Feeds a slice of this type into the given [Hasher]. Read more

impl<N> Isometry<Point<N, U2>> for Unit<Complex<N>> where
    N: RealField,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

impl<N, D> Isometry<Point<N, D>> for Rotation<N, D> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, D>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N> Isometry<Point<N, U3>> for Unit<Quaternion<N>> where
    N: RealField
[src]

impl<N, D> Isometry<Point<N, D>> for Translation<N, D> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N, D, R> Isometry<Point<N, D>> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N, D> Bounded for Point<N, D> where
    D: DimName,
    N: Scalar + Bounded,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N1, N2, D> SubsetOf<Point<N2, D>> for Point<N1, D> where
    D: DimName,
    N1: Scalar,
    N2: Scalar + SupersetOf<N1>,
    DefaultAllocator: Allocator<N2, D, U1>,
    DefaultAllocator: Allocator<N1, D, U1>, 
[src]

default fn from_superset(element: &T) -> Option<Self>[src]

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N1, N2, D> SubsetOf<Matrix<N2, <D as DimNameAdd<U1>>::Output, U1, <DefaultAllocator as Allocator<N2, <D as DimNameAdd<U1>>::Output, U1>>::Buffer>> for Point<N1, D> where
    D: DimNameAdd<U1>,
    N1: Scalar,
    N2: Scalar + Zero + One + ClosedDiv<N2> + SupersetOf<N1>,
    DefaultAllocator: Allocator<N1, D, U1>,
    DefaultAllocator: Allocator<N1, <D as DimNameAdd<U1>>::Output, U1>,
    DefaultAllocator: Allocator<N2, <D as DimNameAdd<U1>>::Output, U1>,
    DefaultAllocator: Allocator<N2, D, U1>, 
[src]

default fn from_superset(element: &T) -> Option<Self>[src]

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<'a, 'b, N, D1, D2, SB> Add<&'b Matrix<N, D2, U1, SB>> for &'a Point<N, D1> where
    D1: DimName,
    D2: Dim,
    N: Scalar + ClosedAdd<N>,
    SB: Storage<N, D2, U1>,
    DefaultAllocator: Allocator<N, D1, U1>,
    DefaultAllocator: Allocator<N, D2, U1>,
    DefaultAllocator: SameShapeAllocator<N, D1, U1, D2, U1>,
    ShapeConstraint: SameNumberOfRows<D1, D2>,
    ShapeConstraint: SameNumberOfColumns<U1, U1>,
    <ShapeConstraint as SameNumberOfRows<D1, D2>>::Representative == D1, 
[src]

type Output = Point<N, D1>

The resulting type after applying the + operator.

impl<'b, N, D1, D2, SB> Add<&'b Matrix<N, D2, U1, SB>> for Point<N, D1> where
    D1: DimName,
    D2: Dim,
    N: Scalar + ClosedAdd<N>,
    SB: Storage<N, D2, U1>,
    DefaultAllocator: Allocator<N, D1, U1>,
    DefaultAllocator: Allocator<N, D2, U1>,
    DefaultAllocator: SameShapeAllocator<N, D1, U1, D2, U1>,
    ShapeConstraint: SameNumberOfRows<D1, D2>,
    ShapeConstraint: SameNumberOfColumns<U1, U1>,
    <ShapeConstraint as SameNumberOfRows<D1, D2>>::Representative == D1, 
[src]

type Output = Point<N, D1>

The resulting type after applying the + operator.

impl<'a, N, D1, D2, SB> Add<Matrix<N, D2, U1, SB>> for &'a Point<N, D1> where
    D1: DimName,
    D2: Dim,
    N: Scalar + ClosedAdd<N>,
    SB: Storage<N, D2, U1>,
    DefaultAllocator: Allocator<N, D1, U1>,
    DefaultAllocator: Allocator<N, D2, U1>,
    DefaultAllocator: SameShapeAllocator<N, D1, U1, D2, U1>,
    ShapeConstraint: SameNumberOfRows<D1, D2>,
    ShapeConstraint: SameNumberOfColumns<U1, U1>,
    <ShapeConstraint as SameNumberOfRows<D1, D2>>::Representative == D1, 
[src]

type Output = Point<N, D1>

The resulting type after applying the + operator.

impl<N, D1, D2, SB> Add<Matrix<N, D2, U1, SB>> for Point<N, D1> where
    D1: DimName,
    D2: Dim,
    N: Scalar + ClosedAdd<N>,
    SB: Storage<N, D2, U1>,
    DefaultAllocator: Allocator<N, D1, U1>,
    DefaultAllocator: Allocator<N, D2, U1>,
    DefaultAllocator: SameShapeAllocator<N, D1, U1, D2, U1>,
    ShapeConstraint: SameNumberOfRows<D1, D2>,
    ShapeConstraint: SameNumberOfColumns<U1, U1>,
    <ShapeConstraint as SameNumberOfRows<D1, D2>>::Representative == D1, 
[src]

type Output = Point<N, D1>

The resulting type after applying the + operator.

impl<N> Rotation<Point<N, U3>> for Unit<Quaternion<N>> where
    N: RealField
[src]

impl<N> Rotation<Point<N, U2>> for Unit<Complex<N>> where
    N: RealField,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

impl<N, D> Rotation<Point<N, D>> for Rotation<N, D> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, D>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

Subgroups of the n-dimensional rotation group SO(n).

impl<N, D> Translation<Point<N, D>> for Translation<N, D> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

Subgroups of the n-dimensional translation group T(n).

impl<N> Deref for Point<N, U6> where
    N: Scalar,
    DefaultAllocator: Allocator<N, U6, U1>, 
[src]

type Target = XYZWAB<N>

The resulting type after dereferencing.

impl<N> Deref for Point<N, U2> where
    N: Scalar,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

type Target = XY<N>

The resulting type after dereferencing.

impl<N> Deref for Point<N, U4> where
    N: Scalar,
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

type Target = XYZW<N>

The resulting type after dereferencing.

impl<N> Deref for Point<N, U3> where
    N: Scalar,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

type Target = XYZ<N>

The resulting type after dereferencing.

impl<N> Deref for Point<N, U1> where
    N: Scalar,
    DefaultAllocator: Allocator<N, U1, U1>, 
[src]

type Target = X<N>

The resulting type after dereferencing.

impl<N> Deref for Point<N, U5> where
    N: Scalar,
    DefaultAllocator: Allocator<N, U5, U1>, 
[src]

type Target = XYZWA<N>

The resulting type after dereferencing.

impl<N> DerefMut for Point<N, U1> where
    N: Scalar,
    DefaultAllocator: Allocator<N, U1, U1>, 
[src]

impl<N> DerefMut for Point<N, U5> where
    N: Scalar,
    DefaultAllocator: Allocator<N, U5, U1>, 
[src]

impl<N> DerefMut for Point<N, U2> where
    N: Scalar,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

impl<N> DerefMut for Point<N, U4> where
    N: Scalar,
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

impl<N> DerefMut for Point<N, U6> where
    N: Scalar,
    DefaultAllocator: Allocator<N, U6, U1>, 
[src]

impl<N> DerefMut for Point<N, U3> where
    N: Scalar,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

impl<N> Transformation<Point<N, U2>> for Unit<Complex<N>> where
    N: RealField,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

impl<N, D, R> Transformation<Point<N, D>> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N, D> Transformation<Point<N, D>> for Rotation<N, D> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, D>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N, D, R> Transformation<Point<N, D>> for Similarity<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N, D, C> Transformation<Point<N, D>> for Transform<N, D, C> where
    C: TCategory,
    D: DimNameAdd<U1>,
    N: RealField,
    DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>,
    DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, U1>,
    DefaultAllocator: Allocator<N, D, D>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N> Transformation<Point<N, U3>> for Unit<Quaternion<N>> where
    N: RealField
[src]

impl<N, D> Transformation<Point<N, <D as DimNameSub<U1>>::Output>> for Matrix<N, D, D, <DefaultAllocator as Allocator<N, D, D>>::Buffer> where
    D: DimNameSub<U1>,
    N: RealField,
    DefaultAllocator: Allocator<N, D, D>,
    DefaultAllocator: Allocator<N, <D as DimNameSub<U1>>::Output, U1>,
    DefaultAllocator: Allocator<N, <D as DimNameSub<U1>>::Output, <D as DimNameSub<U1>>::Output>, 
[src]

impl<N, D> Transformation<Point<N, D>> for Translation<N, D> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<'b, N, D1, D2, SB> SubAssign<&'b Matrix<N, D2, U1, SB>> for Point<N, D1> where
    D1: DimName,
    D2: Dim,
    N: Scalar + ClosedSub<N>,
    SB: Storage<N, D2, U1>,
    DefaultAllocator: Allocator<N, D1, U1>,
    ShapeConstraint: SameNumberOfRows<D1, D2>, 
[src]

impl<N, D1, D2, SB> SubAssign<Matrix<N, D2, U1, SB>> for Point<N, D1> where
    D1: DimName,
    D2: Dim,
    N: Scalar + ClosedSub<N>,
    SB: Storage<N, D2, U1>,
    DefaultAllocator: Allocator<N, D1, U1>,
    ShapeConstraint: SameNumberOfRows<D1, D2>, 
[src]

impl<N, D> UlpsEq<Point<N, D>> for Point<N, D> where
    D: DimName,
    N: Scalar + UlpsEq<N>,
    DefaultAllocator: Allocator<N, D, U1>,
    <N as AbsDiffEq<N>>::Epsilon: Copy
[src]

default fn ulps_ne(
    &self,
    other: &Rhs,
    epsilon: Self::Epsilon,
    max_ulps: u32
) -> bool

The inverse of ApproxEq::ulps_eq.

impl<'a, N, D> Div<N> for &'a Point<N, D> where
    D: DimName,
    N: Scalar + ClosedDiv<N>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Point<N, D>

The resulting type after applying the / operator.

impl<N, D> Div<N> for Point<N, D> where
    D: DimName,
    N: Scalar + ClosedDiv<N>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Point<N, D>

The resulting type after applying the / operator.

impl<N, D> Lattice for Point<N, D> where
    D: DimName,
    N: Scalar + Lattice,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

default fn partial_min(&'a self, other: &'a Self) -> Option<&'a Self>[src]

Return the minimum of self and other if they are comparable.

default fn partial_max(&'a self, other: &'a Self) -> Option<&'a Self>[src]

Return the maximum of self and other if they are comparable.

default fn partial_sort2(
    &'a self,
    other: &'a Self
) -> Option<(&'a Self, &'a Self)>
[src]

Sorts two values in increasing order using a partial ordering.

default fn partial_clamp(
    &'a self,
    min: &'a Self,
    max: &'a Self
) -> Option<&'a Self>
[src]

Clamp value between min and max. Returns None if value is not comparable to min or max. Read more

impl<N, D> JoinSemilattice for Point<N, D> where
    D: DimName,
    N: Scalar + JoinSemilattice,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N, D> IndexMut<usize> for Point<N, D> where
    D: DimName,
    N: Scalar,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N, D> Index<usize> for Point<N, D> where
    D: DimName,
    N: Scalar,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = N

The returned type after indexing.

impl<N, D> OrthogonalTransformation<Point<N, D>> for Rotation<N, D> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, D>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N> OrthogonalTransformation<Point<N, U3>> for Unit<Quaternion<N>> where
    N: RealField
[src]

impl<N> OrthogonalTransformation<Point<N, U2>> for Unit<Complex<N>> where
    N: RealField,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

impl<N, D> Eq for Point<N, D> where
    D: DimName,
    N: Scalar + Eq,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<'a, N, D1, D2, SB> Sub<Matrix<N, D2, U1, SB>> for &'a Point<N, D1> where
    D1: DimName,
    D2: Dim,
    N: Scalar + ClosedSub<N>,
    SB: Storage<N, D2, U1>,
    DefaultAllocator: Allocator<N, D1, U1>,
    DefaultAllocator: Allocator<N, D2, U1>,
    DefaultAllocator: SameShapeAllocator<N, D1, U1, D2, U1>,
    ShapeConstraint: SameNumberOfRows<D1, D2>,
    ShapeConstraint: SameNumberOfColumns<U1, U1>,
    <ShapeConstraint as SameNumberOfRows<D1, D2>>::Representative == D1, 
[src]

type Output = Point<N, D1>

The resulting type after applying the - operator.

impl<'b, N, D1, D2, SB> Sub<&'b Matrix<N, D2, U1, SB>> for Point<N, D1> where
    D1: DimName,
    D2: Dim,
    N: Scalar + ClosedSub<N>,
    SB: Storage<N, D2, U1>,
    DefaultAllocator: Allocator<N, D1, U1>,
    DefaultAllocator: Allocator<N, D2, U1>,
    DefaultAllocator: SameShapeAllocator<N, D1, U1, D2, U1>,
    ShapeConstraint: SameNumberOfRows<D1, D2>,
    ShapeConstraint: SameNumberOfColumns<U1, U1>,
    <ShapeConstraint as SameNumberOfRows<D1, D2>>::Representative == D1, 
[src]

type Output = Point<N, D1>

The resulting type after applying the - operator.

impl<N, D1, D2, SB> Sub<Matrix<N, D2, U1, SB>> for Point<N, D1> where
    D1: DimName,
    D2: Dim,
    N: Scalar + ClosedSub<N>,
    SB: Storage<N, D2, U1>,
    DefaultAllocator: Allocator<N, D1, U1>,
    DefaultAllocator: Allocator<N, D2, U1>,
    DefaultAllocator: SameShapeAllocator<N, D1, U1, D2, U1>,
    ShapeConstraint: SameNumberOfRows<D1, D2>,
    ShapeConstraint: SameNumberOfColumns<U1, U1>,
    <ShapeConstraint as SameNumberOfRows<D1, D2>>::Representative == D1, 
[src]

type Output = Point<N, D1>

The resulting type after applying the - operator.

impl<'b, N, D> Sub<&'b Point<N, D>> for Point<N, D> where
    D: DimName,
    N: Scalar + ClosedSub<N>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: SameShapeAllocator<N, D, U1, D, U1>,
    ShapeConstraint: SameNumberOfRows<D, D>,
    ShapeConstraint: SameNumberOfColumns<U1, U1>, 
[src]

type Output = Matrix<N, <ShapeConstraint as SameNumberOfRows<D, D>>::Representative, U1, <DefaultAllocator as Allocator<N, <ShapeConstraint as SameNumberOfRows<D, D>>::Representative, <ShapeConstraint as SameNumberOfColumns<U1, U1>>::Representative>>::Buffer>

The resulting type after applying the - operator.

impl<'a, 'b, N, D1, D2, SB> Sub<&'b Matrix<N, D2, U1, SB>> for &'a Point<N, D1> where
    D1: DimName,
    D2: Dim,
    N: Scalar + ClosedSub<N>,
    SB: Storage<N, D2, U1>,
    DefaultAllocator: Allocator<N, D1, U1>,
    DefaultAllocator: Allocator<N, D2, U1>,
    DefaultAllocator: SameShapeAllocator<N, D1, U1, D2, U1>,
    ShapeConstraint: SameNumberOfRows<D1, D2>,
    ShapeConstraint: SameNumberOfColumns<U1, U1>,
    <ShapeConstraint as SameNumberOfRows<D1, D2>>::Representative == D1, 
[src]

type Output = Point<N, D1>

The resulting type after applying the - operator.

impl<'a, 'b, N, D> Sub<&'b Point<N, D>> for &'a Point<N, D> where
    D: DimName,
    N: Scalar + ClosedSub<N>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: SameShapeAllocator<N, D, U1, D, U1>,
    ShapeConstraint: SameNumberOfRows<D, D>,
    ShapeConstraint: SameNumberOfColumns<U1, U1>, 
[src]

type Output = Matrix<N, <ShapeConstraint as SameNumberOfRows<D, D>>::Representative, U1, <DefaultAllocator as Allocator<N, <ShapeConstraint as SameNumberOfRows<D, D>>::Representative, <ShapeConstraint as SameNumberOfColumns<U1, U1>>::Representative>>::Buffer>

The resulting type after applying the - operator.

impl<'a, N, D> Sub<Point<N, D>> for &'a Point<N, D> where
    D: DimName,
    N: Scalar + ClosedSub<N>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: SameShapeAllocator<N, D, U1, D, U1>,
    ShapeConstraint: SameNumberOfRows<D, D>,
    ShapeConstraint: SameNumberOfColumns<U1, U1>, 
[src]

type Output = Matrix<N, <ShapeConstraint as SameNumberOfRows<D, D>>::Representative, U1, <DefaultAllocator as Allocator<N, <ShapeConstraint as SameNumberOfRows<D, D>>::Representative, <ShapeConstraint as SameNumberOfColumns<U1, U1>>::Representative>>::Buffer>

The resulting type after applying the - operator.

impl<N, D> Sub<Point<N, D>> for Point<N, D> where
    D: DimName,
    N: Scalar + ClosedSub<N>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: SameShapeAllocator<N, D, U1, D, U1>,
    ShapeConstraint: SameNumberOfRows<D, D>,
    ShapeConstraint: SameNumberOfColumns<U1, U1>, 
[src]

type Output = Matrix<N, <ShapeConstraint as SameNumberOfRows<D, D>>::Representative, U1, <DefaultAllocator as Allocator<N, <ShapeConstraint as SameNumberOfRows<D, D>>::Representative, <ShapeConstraint as SameNumberOfColumns<U1, U1>>::Representative>>::Buffer>

The resulting type after applying the - operator.

impl<N, D> AffineSpace for Point<N, D> where
    D: DimName,
    N: Scalar + Field + Scalar + Field,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Translation = Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>

The associated vector space.

default fn translate_by(&self, t: &Self::Translation) -> Self[src]

Same as *self + *t. Applies the additive group action of this affine space's associated vector space on self. Read more

default fn subtract(&self, right: &Self) -> Self::Translation[src]

Same as *self - *other. Returns the unique element v of the associated vector space such that self = right + v. Read more

impl<N, D> From<Point<N, D>> for Matrix<N, <D as DimNameAdd<U1>>::Output, U1, <DefaultAllocator as Allocator<N, <D as DimNameAdd<U1>>::Output, U1>>::Buffer> where
    D: DimName + DimNameAdd<U1>,
    N: Scalar + Zero + One,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, U1>, 
[src]

impl<N> From<[N; 5]> for Point<N, U5> where
    N: Scalar
[src]

impl<N> From<[N; 4]> for Point<N, U4> where
    N: Scalar
[src]

impl<N> From<[N; 2]> for Point<N, U2> where
    N: Scalar
[src]

impl<N, D> From<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>> for Point<N, D> where
    D: DimName,
    N: Scalar,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N> From<[N; 6]> for Point<N, U6> where
    N: Scalar
[src]

impl<N> From<[N; 1]> for Point<N, U1> where
    N: Scalar
[src]

impl<N> From<[N; 3]> for Point<N, U3> where
    N: Scalar
[src]

impl<T: BaseNum> JoinPnt<T, Point<T, U2>> for T[src]

type Output = Point3<T>

impl<T: BaseNum> JoinPnt<T, Point<T, U3>> for T[src]

type Output = Point4<T>

impl<T: BaseNum> JoinPnt<T, Point<T, U2>> for Point2<T>[src]

type Output = Point4<T>

impl<T: Scalar> IntoPnt<Point<T, U2>> for T[src]

impl<T: Scalar> IntoPnt<Point<T, U2>> for [T; 2][src]

impl<'a, T: Scalar> IntoPnt<Point<T, U2>> for &'a [T][src]

impl<T: Scalar> IntoPnt<Point<T, U3>> for T[src]

impl<T: Scalar> IntoPnt<Point<T, U3>> for [T; 3][src]

impl<'a, T: Scalar> IntoPnt<Point<T, U3>> for &'a [T][src]

impl<T: Scalar> IntoPnt<Point<T, U4>> for T[src]

impl<T: Scalar> IntoPnt<Point<T, U4>> for [T; 4][src]

impl<'a, T: Scalar> IntoPnt<Point<T, U4>> for &'a [T][src]

impl<T: RealField> ToPnt<Point<T, U1>> for Vector1<T>[src]

impl<T: RealField> ToPnt<Point<T, U2>> for Vector2<T>[src]

impl<T: RealField> ToPnt<Point<T, U3>> for Vector3<T>[src]

impl<T: RealField> ToPnt<Point<T, U4>> for Vector4<T>[src]

impl<T: RealField> ToPnt<Point<T, U5>> for Vector5<T>[src]

impl<T: RealField> ToPnt<Point<T, U6>> for Vector6<T>[src]

impl<T: RealField> AsPnt<Point<T, U1>> for Vector1<T>[src]

impl<T: RealField> AsPnt<Point<T, U2>> for Vector2<T>[src]

impl<T: RealField> AsPnt<Point<T, U3>> for Vector3<T>[src]

impl<T: RealField> AsPnt<Point<T, U4>> for Vector4<T>[src]

impl<T: RealField> AsPnt<Point<T, U5>> for Vector5<T>[src]

impl<T: RealField> AsPnt<Point<T, U6>> for Vector6<T>[src]

Auto Trait Implementations

impl<N, D> !Send for Point<N, D>

impl<N, D> !Sync for Point<N, D>

Blanket Implementations

impl<V> IntoVec for V[src]

impl<V> IntoPnt for V[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

impl<T> ToString for T where
    T: Display + ?Sized
[src]

impl<T> From for T[src]

impl<T, U> Into for T where
    U: From<T>, 
[src]

impl<T, U> TryFrom for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T> Borrow for T where
    T: ?Sized
[src]

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> BorrowMut for T where
    T: ?Sized
[src]

impl<T, U> TryInto for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<T, Right> ClosedMul for T where
    T: Mul<Right, Output = T> + MulAssign<Right>, 
[src]

impl<T, Right> ClosedAdd for T where
    T: Add<Right, Output = T> + AddAssign<Right>, 
[src]

impl<T> Same for T

type Output = T

Should always be Self

impl<T, Right> ClosedDiv for T where
    T: Div<Right, Output = T> + DivAssign<Right>, 
[src]

impl<T, Right> ClosedSub for T where
    T: Sub<Right, Output = T> + SubAssign<Right>, 
[src]

impl<T> ClosedNeg for T where
    T: Neg<Output = T>, 
[src]

impl<SS, SP> SupersetOf for SP where
    SS: SubsetOf<SP>, 
[src]