1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
//! Helper functions and data structures for manipulating array data

use std::borrow::Cow;
use std::iter::Sum;
use std::ops::{Add, Index, Range};

use std::convert;

use num_traits::{AsPrimitive, Float, ToPrimitive, Zero};


/// Create an evenly spaced grid from `start` to `end`, with `step` between points
pub fn gridspace<T: Float + ToPrimitive>(start: T, end: T, step: T) -> Vec<T> {
    let distance = end - start;
    let steps = (distance / step).to_usize().unwrap();
    let mut result = Vec::with_capacity(steps);
    for i in 0..steps {
        result.push(start + T::from(i).unwrap() * step);
    }
    result
}


/// Given an unsorted slice, find its minimum and maximum values
pub fn minmax<T: Float>(values: &[T]) -> (T, T) {
    let mut max = -T::infinity();
    let mut min = T::infinity();

    for v in values.iter() {
        if *v > max {
            max = *v;
        }
        if *v < min {
            min = *v
        }
    }
    (min, max)
}


/// Trapezoid integration
pub fn trapz<
    A: Float + Clone + AsPrimitive<B> + 'static,
    B: Float + Clone + AsPrimitive<A> + 'static + Sum,
>(
    x: &[A],
    y: &[B],
) -> B {
    let half = B::from(0.5).unwrap();
    let n = x.len();
    (0..n - 2)
        .map(|i| {
            let delta = x[i + 1] - x[i];
            delta.as_() * half * (y[i + 1] + y[i])
        })
        .sum()
}

pub trait MZGrid {
    fn mz_grid(&self) -> &[f64];

    fn create_intensity_array(&self) -> Vec<f32> {
        self.create_intensity_array_of_size(self.mz_grid().len())
    }

    fn create_intensity_array_of_size(&self, size: usize) -> Vec<f32> {
        vec![0.0; size]
    }

    fn find_offset(&self, mz: f64) -> usize {
        match self
            .mz_grid()
            .binary_search_by(|x| x.partial_cmp(&mz).unwrap())
        {
            Ok(i) => i,
            Err(i) => i,
        }
    }

    fn points_between(&self, start_mz: f64, end_mz: f64) -> usize {
        let offset = self.find_offset(start_mz);
        let stop_index = self.find_offset(end_mz);
        stop_index - offset
    }

    fn copy_mz_array(&self) -> Vec<f64> {
        let grid = self.mz_grid();
        grid.into()
    }
}

#[derive(Debug, Default, Clone)]
/// Represent an m/z array and an intensity array with independent
/// "borrowing" statuses using [`std::borrow::Cow`]. Adds a few helper
/// methods.
pub struct ArrayPair<'lifespan> {
    pub mz_array: Cow<'lifespan, [f64]>,
    pub intensity_array: Cow<'lifespan, [f32]>,
    pub min_mz: f64,
    pub max_mz: f64,
}

impl<'lifespan> ArrayPair<'lifespan> {
    pub fn wrap(
        mz_array: &'lifespan [f64],
        intensity_array: &'lifespan [f32],
    ) -> ArrayPair<'lifespan> {
        Self::new(Cow::Borrowed(mz_array), Cow::Borrowed(intensity_array))
    }

    pub fn new(
        mz_array: Cow<'lifespan, [f64]>,
        intensity_array: Cow<'lifespan, [f32]>,
    ) -> ArrayPair<'lifespan> {
        let min_mz = match mz_array.first() {
            Some(min_mz) => *min_mz,
            None => 0.0,
        };
        let max_mz = match mz_array.last() {
            Some(max_mz) => *max_mz,
            None => min_mz,
        };
        ArrayPair {
            mz_array,
            intensity_array,
            min_mz,
            max_mz,
        }
    }

    /// Find the index nearest to `mz`
    pub fn find(&self, mz: f64) -> usize {
        match self
            .mz_array
            .binary_search_by(|x| x.partial_cmp(&mz).unwrap())
        {
            Ok(i) => i.min(self.mz_array.len().saturating_sub(1)),
            Err(i) => i.min(self.mz_array.len().saturating_sub(1)),
        }
    }

    /// Select the slice of the m/z and intensity arrays between `low` m/z and `high` m/z
    /// returning a non-owning [`ArrayPair`]
    pub fn find_between(&self, low: f64, high: f64) -> ArrayPair<'_> {
        let i_low = self.find(low);
        let i_high = self.find(high);
        let mz_array = &self.mz_array[i_low..i_high];
        let intensity_array = &self.intensity_array[i_low..i_high];
        (mz_array, intensity_array).into()
    }

    pub fn len(&self) -> usize {
        self.mz_array.len()
    }

    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    pub fn get(&self, i: usize) -> Option<(f64, f32)> {
        if i >= self.len() {
            None
        } else {
            Some((self.mz_array[i], self.intensity_array[i]))
        }
    }

    pub fn borrow(&'_ self) -> ArrayPair<'_> {
        ArrayPair::new(
            Cow::Borrowed(&self.mz_array),
            Cow::Borrowed(&self.intensity_array),
        )
    }

    pub fn to_owned(self) -> ArrayPair<'static> {
        let mz_array = match self.mz_array {
            Cow::Borrowed(b) => Cow::Owned(b.to_vec()),
            Cow::Owned(b) => Cow::Owned(b),
        };
        let intensity_array = match self.intensity_array {
            Cow::Borrowed(b) => Cow::Owned(b.to_vec()),
            Cow::Owned(b) => Cow::Owned(b),
        };
        ArrayPair::new(mz_array, intensity_array)
    }
}

impl<'lifespan> convert::From<(Cow<'lifespan, [f64]>, Cow<'lifespan, [f32]>)>
    for ArrayPair<'lifespan>
{
    fn from(pair: (Cow<'lifespan, [f64]>, Cow<'lifespan, [f32]>)) -> ArrayPair<'lifespan> {
        ArrayPair::new(pair.0, pair.1)
    }
}

impl<'lifespan> convert::From<(&'lifespan [f64], &'lifespan [f32])> for ArrayPair<'lifespan> {
    fn from(pair: (&'lifespan [f64], &'lifespan [f32])) -> ArrayPair<'lifespan> {
        ArrayPair::wrap(pair.0, pair.1)
    }
}

impl<'lifespan> convert::From<(Vec<f64>, Vec<f32>)> for ArrayPair<'lifespan> {
    fn from(pair: (Vec<f64>, Vec<f32>)) -> ArrayPair<'lifespan> {
        let mz_array = Cow::Owned(pair.0);
        let intensity_array = Cow::Owned(pair.1);
        ArrayPair::new(mz_array, intensity_array)
    }
}