1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
// Copyright (c) 2020 Anatoly Ikorsky
//
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or http://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. All files in the project carrying such notice may not be copied,
// modified, or distributed except according to those terms.

//! Functions and types related to the mysql decimal type.

use byteorder::{BigEndian as BE, ReadBytesExt, WriteBytesExt};

use std::{
    cmp::{Ord, Ordering, PartialEq, PartialOrd},
    fmt,
    io::{self, Read, Write},
    mem::size_of,
    str::FromStr,
};

#[cfg(test)]
mod test;

#[derive(Debug, Clone, Copy)]
pub struct ParseDecimalError;

/// Type of a base 9 digit.
pub type Digit = i32;

/// Number of decimal digits per `Digit`.
pub const DIG_PER_DEC: usize = 9;

/// Base of the `Digit`.
pub const DIG_BASE: usize = 1_000_000_000;

/// Number of bytes required to store given number of decimal digits.
pub const DIG_TO_BYTES: [u8; DIG_PER_DEC + 1] = [0, 1, 1, 2, 2, 3, 3, 4, 4, 4];

pub const POWERS_10: [i32; DIG_PER_DEC + 1] = [
    1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000,
];

/// MySql decimal.
///
/// The only purpose of this type is to parse binary decimal from binlogs,
/// so it isn't meant to be an alternative to `decimal_t`.
///
/// This type supports:
///
/// *   serialization/deserialization to/from binary format
///     (see `read_bin` and `write_bin` functions);
/// *   parsing from decimal string/buffer (see `Decimal::parse_bytes`, `FromStr` impl);
/// *   conversion to decimal string (using `Display`).
///
/// # Notes
///
/// *   `Ord` and `Eq` impls are relied on the binary representation,
///     i.e. both `rhs` and `lhs` will be serialized into temporary buffers;
/// *   even though MySql's `string2decimal` function allows scientific notation,
///     this implementation denies it.
#[derive(Default, Debug, Eq)]
pub struct Decimal {
    /// The number of *decimal* digits (NOT number of `Digit`s!) before the point.
    intg: usize,
    /// The number of decimal digits after the point.
    frac: usize,
    /// `false` means positive, `true` means negative.
    sign: bool,
    /// Array of `Digit`s.
    buf: Vec<Digit>,
}

impl Decimal {
    pub fn bin_size(&self) -> usize {
        decimal_bin_size(self.intg + self.frac, self.frac)
    }

    pub fn parse_bytes(bytes: &[u8]) -> Result<Self, ParseDecimalError> {
        match std::str::from_utf8(bytes) {
            Ok(string) => Decimal::from_str(string),
            Err(_) => Err(ParseDecimalError),
        }
    }

    pub fn write_bin<T: Write>(&self, mut output: T) -> io::Result<()> {
        // result bits must be inverted if the sign is negative,
        // we'll XOR it with `mask` to achieve this.
        let mask: Digit = if self.sign {
            // XOR with this mask will invert bits
            -1
        } else {
            // XOR with this mask will do nothing
            0
        };

        let mut out_buf = Vec::with_capacity(self.buf.len() * size_of::<Digit>());

        let mut digits = self.buf.iter();

        let mut intg = self.intg;
        let num_prefix_digits = self.intg % DIG_PER_DEC;
        if num_prefix_digits > 0 {
            let digit = *digits.next().expect("decimal is ill-formed");
            match DIG_TO_BYTES[num_prefix_digits] {
                1 => out_buf.write_i8((digit ^ mask) as i8)?,
                2 => out_buf.write_i16::<BE>((digit ^ mask) as i16)?,
                3 => out_buf.write_i24::<BE>((digit ^ mask) as i32)?,
                4 => out_buf.write_i32::<BE>((digit ^ mask) as i32)?,
                _ => unreachable!(),
            }
            intg -= num_prefix_digits;
        }
        while intg > 0 {
            let digit = *digits.next().expect("decimal is ill-formed");
            out_buf.write_i32::<BE>((digit ^ mask) as i32)?;
            intg -= DIG_PER_DEC;
        }
        let mut frac = self.frac;
        while frac > 0 {
            let len = std::cmp::min(DIG_PER_DEC, frac);
            let mut digit = *digits.next().expect("decimal is ill-formed");
            if len < DIG_PER_DEC {
                digit /= POWERS_10[DIG_PER_DEC - len];
                match DIG_TO_BYTES[len] {
                    1 => out_buf.write_i8((digit ^ mask) as i8)?,
                    2 => out_buf.write_i16::<BE>((digit ^ mask) as i16)?,
                    3 => out_buf.write_i24::<BE>((digit ^ mask) as i32)?,
                    4 => out_buf.write_i32::<BE>((digit ^ mask) as i32)?,
                    _ => unreachable!(),
                }
            } else {
                out_buf.write_i32::<BE>((digit ^ mask) as i32)?;
            }
            frac -= len
        }

        out_buf[0] ^= 0x80;

        output.write_all(&out_buf)
    }

    pub fn read_bin<T: Read>(
        mut input: T,
        precision: usize,
        scale: usize,
        keep_prec: bool,
    ) -> io::Result<Self> {
        let mut out = Self::default();

        let bin_size = decimal_bin_size(precision, scale);
        let mut buffer = vec![0_u8; bin_size];
        input.read_exact(&mut buffer)?;

        // we should invert back the very first bit of a binary representation
        if let Some(x) = buffer.get_mut(0) {
            *x ^= 0x80
        }

        // is it negative or not
        let mask = if buffer.first().copied().unwrap_or(0) & 0x80 == 0 {
            // positive, so mask should do noghing
            0
        } else {
            // negative, so mask snould invert bits
            -1
        };

        let intg = precision - scale;
        let prefix_len = intg % DIG_PER_DEC;
        let intg_full = intg / DIG_PER_DEC;

        let frac = scale;
        let suffix_len = frac % DIG_PER_DEC;
        let frac_full = frac / DIG_PER_DEC;

        out.sign = mask != 0;
        out.intg = intg;
        out.frac = frac;

        let mut input = &buffer[..];

        let mut trimmed = keep_prec;
        if prefix_len > 0 {
            let len = DIG_TO_BYTES[prefix_len];
            let x = match len {
                1 => input.read_i8()? as i32,
                2 => input.read_i16::<BE>()? as i32,
                3 => input.read_i24::<BE>()?,
                4 => input.read_i32::<BE>()?,
                _ => unreachable!(),
            } ^ mask;
            if x == 0 && !trimmed {
                out.intg -= prefix_len;
            } else {
                trimmed = true;
                out.buf.push(x);
            }
        }
        for _ in 0..intg_full {
            let x = input.read_i32::<BE>()? ^ mask;
            if x == 0 && !trimmed {
                out.intg -= DIG_PER_DEC;
            } else {
                trimmed = true;
                out.buf.push(x);
            }
        }
        for _ in 0..frac_full {
            out.buf.push(input.read_i32::<BE>()? ^ mask);
        }
        if suffix_len > 0 {
            let len = DIG_TO_BYTES[suffix_len];
            let mut x = match len {
                1 => input.read_i8()? as i32,
                2 => input.read_i16::<BE>()? as i32,
                3 => input.read_i24::<BE>()?,
                4 => input.read_i32::<BE>()?,
                _ => unreachable!(),
            } ^ mask;
            x *= POWERS_10[DIG_PER_DEC - suffix_len];
            out.buf.push(x);
        }

        if out.intg == 0 && out.frac == 0 {
            out.intg = 1;
            out.frac = 0;
            out.sign = false;
            out.buf.resize(1, 0);
            out.buf[0] = 0;
        }

        Ok(out)
    }
}

impl Ord for Decimal {
    fn cmp(&self, other: &Self) -> Ordering {
        let mut left = Vec::with_capacity(self.bin_size());
        let mut right = Vec::with_capacity(self.bin_size());
        self.write_bin(&mut left).expect("OOM");
        other.write_bin(&mut right).expect("OOM");
        left.cmp(&right)
    }
}

impl PartialOrd for Decimal {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl PartialEq for Decimal {
    fn eq(&self, other: &Self) -> bool {
        self.cmp(other) == Ordering::Equal
    }
}

impl fmt::Display for Decimal {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let prefix_len = self.intg % DIG_PER_DEC;
        let suffix_len = self.frac % DIG_PER_DEC;

        let mut intg = self.intg;
        if self.sign {
            '-'.fmt(f)?;
        }

        let mut i = 0;

        while i < self.buf.len() && intg > 0 {
            let x = self.buf[i];
            i += 1;
            if prefix_len > 0 && i == 1 {
                x.fmt(f)?;
                intg -= prefix_len;
            } else {
                if i == 1 {
                    x.fmt(f)?;
                } else {
                    write!(f, "{:09}", x)?;
                }
                intg -= DIG_PER_DEC;
            }
        }

        if self.intg == 0 {
            '0'.fmt(f)?;
        }

        if i < self.buf.len() {
            '.'.fmt(f)?;
        }

        while i < self.buf.len() {
            let mut x = self.buf[i];
            i += 1;
            if i == self.buf.len() && suffix_len > 0 {
                x /= POWERS_10[DIG_PER_DEC - suffix_len];
                write!(&mut *f, "{:0width$}", x, width = suffix_len)?;
            } else {
                write!(f, "{:09}", x)?;
            }
        }

        Ok(())
    }
}

impl FromStr for Decimal {
    type Err = ParseDecimalError;
    fn from_str(mut from: &str) -> Result<Self, Self::Err> {
        let mut out = Decimal::default();

        from = from.trim();

        if from.is_empty() {
            return Err(ParseDecimalError);
        }

        if from.starts_with('-') {
            out.sign = true;
            from = &from[1..];
        } else if from.starts_with('+') {
            from = &from[1..];
        }

        let point_idx = from.find('.').unwrap_or(from.len());
        let (mut integral, mut fractional) = from.split_at(point_idx);
        fractional = fractional.get(1..).unwrap_or(fractional);

        out.intg = integral.len();
        out.frac = fractional.len();

        if out.intg + out.frac == 0 {
            return Err(ParseDecimalError);
        }

        if integral.bytes().any(|x| !x.is_ascii_digit())
            || fractional.bytes().any(|x| !x.is_ascii_digit())
        {
            return Err(ParseDecimalError);
        }

        let mut prefix_len = integral.len() % DIG_PER_DEC;
        if prefix_len == 0 {
            prefix_len = DIG_PER_DEC;
        }
        while !integral.is_empty() {
            let prefix = &integral[..prefix_len];
            let x: i32 = prefix.parse().expect("should not fail");
            out.buf.push(x);
            integral = &integral[prefix_len..];
            prefix_len = DIG_PER_DEC;
        }

        while !fractional.is_empty() {
            let len = std::cmp::min(DIG_PER_DEC, fractional.len());
            let prefix = &fractional[..len];
            let mut x: i32 = prefix.parse().expect("should not fail");
            if len < DIG_PER_DEC {
                x *= POWERS_10[DIG_PER_DEC - len];
            }
            out.buf.push(x);
            fractional = &fractional[len..];
        }

        if out.buf.iter().all(|x| *x == 0) {
            out.sign = false;
        }

        Ok(out)
    }
}

/// Returns binary representation size (in bytes) for given precision and scale.
#[inline]
pub fn decimal_bin_size(precision: usize, scale: usize) -> usize {
    let intg = precision - scale;
    let intg0 = intg / DIG_PER_DEC;
    let frac0 = scale / DIG_PER_DEC;
    let intg0x = intg - intg0 * DIG_PER_DEC;
    let frac0x = scale - frac0 * DIG_PER_DEC;

    intg0 * size_of::<Digit>()
        + DIG_TO_BYTES[intg0x] as usize
        + frac0 * size_of::<Digit>()
        + DIG_TO_BYTES[frac0x] as usize
}