1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
// Copyright (c) 2016 Anatoly Ikorsky
//
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or http://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. All files in the project carrying such notice may not be copied,
// modified, or distributed except according to those terms.

use sha1::Sha1;
use sha2::{Digest, Sha256};

fn xor<T, U>(mut left: T, right: U) -> T
where
    T: AsMut<[u8]>,
    U: AsRef<[u8]>,
{
    left.as_mut()
        .iter_mut()
        .zip(right.as_ref().iter())
        .map(|(l, r)| *l ^= r)
        .last();
    left
}

fn to_u8_32(bytes: impl AsRef<[u8]>) -> [u8; 32] {
    let mut out = [0; 32];
    (&mut out[..]).copy_from_slice(bytes.as_ref());
    out
}

/// Insecure password hasing used in mysql_old_password.
fn hash_password(output: &mut [u32; 2], password: &[u8]) {
    let mut nr: u32 = 1345345333;
    let mut add: u32 = 7;
    let mut nr2: u32 = 0x12345671;

    let mut tmp: u32;

    for x in password {
        if *x == b' ' || *x == b'\t' {
            continue;
        }

        tmp = *x as u32;
        nr ^= (nr & 63)
            .wrapping_add(add)
            .wrapping_mul(tmp)
            .wrapping_add(nr << 8);
        nr2 = nr2.wrapping_add((nr2 << 8) ^ nr);
        add = add.wrapping_add(tmp);
    }

    output[0] = nr & 0b01111111_11111111_11111111_11111111;
    output[1] = nr2 & 0b01111111_11111111_11111111_11111111;
}

pub fn scramble_323(nonce: &[u8], password: &[u8]) -> Option<[u8; 8]> {
    struct Rand323 {
        seed1: u32,
        seed2: u32,
        max_value: u32,
        max_value_dbl: f64,
    }

    impl Rand323 {
        fn init(seed1: u32, seed2: u32) -> Self {
            Self {
                max_value: 0x3FFFFFFF,
                max_value_dbl: 0x3FFFFFFF as f64,
                seed1: seed1 % 0x3FFFFFFF,
                seed2: seed2 % 0x3FFFFFFF,
            }
        }

        fn my_rnd(&mut self) -> f64 {
            self.seed1 = (self.seed1 * 3 + self.seed2) % self.max_value;
            self.seed2 = (self.seed1 + self.seed2 + 33) % self.max_value;
            (self.seed1 as f64) / self.max_value_dbl
        }
    }

    let mut hash_pass = [0_u32; 2];
    let mut hash_message = [0_u32; 2];

    if password.is_empty() {
        return None;
    }

    let mut output = [0_u8; 8];
    let extra: u8;

    hash_password(&mut hash_pass, password);
    hash_password(&mut hash_message, nonce);

    let mut rand_st = Rand323::init(
        hash_pass[0] ^ hash_message[0],
        hash_pass[1] ^ hash_message[1],
    );

    for x in output.iter_mut() {
        *x = ((rand_st.my_rnd() * 31_f64).floor() + 64_f64) as u8;
    }

    extra = (rand_st.my_rnd() * 31_f64).floor() as u8;

    for x in output.iter_mut() {
        *x ^= extra;
    }

    Some(output)
}

/// Scramble algorithm used in mysql_native_password.
///
/// SHA1(password) XOR SHA1(nonce, SHA1(SHA1(password)))
pub fn scramble_native(nonce: &[u8], password: &[u8]) -> Option<[u8; 20]> {
    fn sha1_1(bytes: impl AsRef<[u8]>) -> [u8; 20] {
        Sha1::digest(bytes).into()
    }

    fn sha1_2(bytes1: impl AsRef<[u8]>, bytes2: impl AsRef<[u8]>) -> [u8; 20] {
        let mut hasher = Sha1::new();
        hasher.update(bytes1.as_ref());
        hasher.update(bytes2.as_ref());
        hasher.finalize().into()
    }

    if password.is_empty() {
        return None;
    }

    Some(xor(
        sha1_1(password),
        sha1_2(nonce, sha1_1(sha1_1(password))),
    ))
}

/// Scramble algorithm used in cached_sha2_password fast path.
///
/// XOR(SHA256(password), SHA256(SHA256(SHA256(password)), nonce))
pub fn scramble_sha256(nonce: &[u8], password: &[u8]) -> Option<[u8; 32]> {
    fn sha256_1(bytes: impl AsRef<[u8]>) -> [u8; 32] {
        let mut hasher = Sha256::default();
        hasher.update(bytes.as_ref());
        to_u8_32(hasher.finalize())
    }

    fn sha256_2(bytes1: impl AsRef<[u8]>, bytes2: impl AsRef<[u8]>) -> [u8; 32] {
        let mut hasher = Sha256::default();
        hasher.update(bytes1.as_ref());
        hasher.update(bytes2.as_ref());
        to_u8_32(hasher.finalize())
    }

    if password.is_empty() {
        return None;
    }

    Some(xor(
        sha256_1(password),
        sha256_2(sha256_1(sha256_1(password)), nonce),
    ))
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn should_compute_scrambled_password() {
        let scr = [
            0x4e, 0x52, 0x33, 0x48, 0x50, 0x3a, 0x71, 0x49, 0x59, 0x61, 0x5f, 0x39, 0x3d, 0x64,
            0x62, 0x3f, 0x53, 0x64, 0x7b, 0x60,
        ];
        let password = [0x47, 0x21, 0x69, 0x64, 0x65, 0x72, 0x32, 0x37];
        let output1 = scramble_native(&scr, &password);
        let output2 = scramble_sha256(&scr, &password);
        assert!(output1.is_some());
        assert!(output2.is_some());
        assert_eq!(
            output1.unwrap(),
            [
                0x09, 0xcf, 0xf8, 0x85, 0x5e, 0x9e, 0x70, 0x53, 0x40, 0xff, 0x22, 0x70, 0xd8, 0xfb,
                0x9f, 0xad, 0xba, 0x90, 0x6b, 0x70,
            ]
        );
        assert_eq!(
            output2.unwrap(),
            [
                0x4f, 0x97, 0xbb, 0xfd, 0x20, 0x24, 0x01, 0xc4, 0x2a, 0x69, 0xde, 0xaa, 0xe5, 0x3b,
                0xda, 0x07, 0x7e, 0xd7, 0x57, 0x85, 0x63, 0xc1, 0xa8, 0x0e, 0xb8, 0x16, 0xc8, 0x21,
                0x19, 0xb6, 0x8d, 0x2e,
            ]
        );
    }
}