1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
#[cfg(test)]
mod tests {
    #[test]
    fn it_works() {
        assert_eq!(2 + 2, 4);
    }
}

use std::cmp::{max, min};
use std::mem::take;

pub struct Muto {
	jobs: Vec<Job>,
	vehicles: Vec<Vehicle>,
	cost_matrix: CostMatrix,
}

impl Muto {
	pub fn new() -> Muto {
		Muto {
			jobs: vec!(),
			vehicles: vec!(),
			cost_matrix: CostMatrix {
				elements: vec![],
			},
		}
	}

	pub fn add_job(&mut self, job: Job) {
		self.jobs.push(job);
	}

	pub fn set_cost_matrix(&mut self, cost_matrix: CostMatrix) {
		self.cost_matrix = cost_matrix;
	}

	pub fn start(&self) {
		println!("Hello, World!");
	}

	pub fn add_vehicle(&mut self, vehicle: Vehicle) {
		self.vehicles.push(vehicle);
	}

	pub fn solve(&mut self) -> Vec<Solution> {

		let mut routes: Vec<Route> = vec![];

		let mut unassigned_jobs: Vec<Job> = vec![];

		for job in self.jobs.iter() {
			unassigned_jobs.push(*job);
		}

		let mut cost: i64 = 0;

		// Just do a really simple greedy algorithm at the moment.
		for vehicle in self.vehicles.iter() {

			if unassigned_jobs.len() == 0 {
				break;
			}

			let mut route: Route = Route::new(vehicle.id);

			route.tasks.push(Task {
				start_time: vehicle.time_window.start,
				end_time: vehicle.time_window.start,
				location: vehicle.start_location,
				task_type: TaskType::START(),
			});

			route.tasks.push(Task {
				start_time: vehicle.time_window.end,
				end_time: vehicle.time_window.end,
				location: vehicle.end_location,
				task_type: TaskType::END(),
			});

			// Find the job that costs the least to insert next in the route.
			// Get all the jobs to try

			let mut attempt_jobs: Vec<Job> = vec![];

			for job in unassigned_jobs.iter() {
				attempt_jobs.push(*job);
			}

			unassigned_jobs.clear();

			// Go through each job to attempt.
			// If it can be inserted, store how much that will cost
			// If it can't be inserted, discard it
			// Find the least cost job and insert it into the tasks
			// Clear and insert all viable jobs back into the attempt list
			// Repeat until we end up with zero viable jobs to attempt again with

			while attempt_jobs.len() > 0 {

				let mut re_insert: Vec<Job> = vec![];

				let mut best_insertion: Option<InsertionData> = None;

				for job in attempt_jobs.iter() {

					if job.time_window.end < vehicle.time_window.start ||
						job.time_window.start > vehicle.time_window.end {
						unassigned_jobs.push(*job);
						continue;
					}

					let insertion_data = self.attempt_insert(job, &vehicle, &route);

					match insertion_data {

						None => {
							unassigned_jobs.push(*job);
						}

						Some(insertion_data) => {
							if let Some(current_best) = best_insertion {

								if insertion_data.cost < current_best.cost {
									best_insertion = Some(insertion_data);
									re_insert.push(current_best.job);

								} else {
									re_insert.push(insertion_data.job);
								}

							} else {
								best_insertion = Some(insertion_data);
							}
						}
					}

				}

				if let Some(best_insert) = best_insertion {

					cost += best_insert.cost;

					route.tasks.push(Task{
						start_time: best_insert.insertion_time,
						end_time: best_insert.insertion_time + best_insert.job.service_time,
						location: best_insert.job.location,
						task_type: TaskType::JOB(JobTaskData{
							job_id: best_insert.job.id,
						})
					});

					route.tasks.sort_by(|a, b| a.start_time.cmp(&b.start_time));
				}

				attempt_jobs.clear();
				for job in re_insert.iter() {
					attempt_jobs.push(*job);
				}
			}

			routes.push(route);
		}

		vec!(Solution {
			cost,
			routes,
		})
	}

	fn attempt_insert(&self, job: &Job, vehicle: &Vehicle, route: &Route) -> Option<InsertionData> {

		let start_bound = max(job.time_window.start, vehicle.time_window.start);
		let end_bound = min(job.time_window.end, vehicle.time_window.end);

		let mut insert_time = start_bound;
		let mut insert_end_time = insert_time + job.service_time;

		let mut prev_task: &Task = route.tasks.get(0).unwrap();
		let mut next_task: &Task = route.tasks.get(1).unwrap();
		let mut task_counter = 1;

		while insert_end_time <= end_bound {

			let travel_time_from_prev = self.cost_matrix.get_time(prev_task.location, job.location);
			let travel_time_to_next = self.cost_matrix.get_time(job.location, next_task.location);

			if prev_task.end_time + travel_time_from_prev <= insert_time &&
				next_task.start_time - travel_time_to_next >= insert_end_time {
				return Some(InsertionData{
					prev_task: *prev_task,
					next_task: *next_task,
					job: *job,
					cost: travel_time_from_prev,
					insertion_time: insert_time,
				});
			}

			insert_time = prev_task.end_time + travel_time_from_prev;
			insert_end_time = insert_time + job.service_time;

			task_counter += 1;

			if let Some(task) = route.tasks.get(task_counter) {
				prev_task = next_task;
				next_task = task;
			}
		}

		return None;
	}
}

pub struct Solution {
	pub cost: i64,
	pub routes: Vec<Route>,
}

pub struct Route {
	pub vehicle_id: i64,
	pub tasks: Vec<Task>,
}

impl Route {

	pub fn new(vehicle_id: i64) -> Route {
		Route {
			vehicle_id,
			tasks: vec![],
		}
	}

}

#[derive(Debug, Copy, Clone)]
struct InsertionData {
	prev_task: Task,
	next_task: Task,
	job: Job,
	cost: i64,
	insertion_time: i64,
}

#[derive(Debug, Copy, Clone)]
pub struct Task {
	pub start_time: i64,
	pub end_time: i64,
	pub location: usize,
	pub task_type: TaskType,
}

#[derive(Debug, Copy, Clone)]
pub enum TaskType {
	JOB(JobTaskData),
	START(),
	END(),
}

#[derive(Debug, Copy, Clone)]
pub struct JobTaskData {
	pub job_id: i64,
}

#[derive(Debug, Copy, Clone)]
pub struct Job {
	id: i64,
	location: usize,
	time_window: TimeWindow,
	service_time: i64,
}

#[derive(Debug, Copy, Clone)]
pub struct TimeWindow {
	start: i64,
	end: i64
}

impl Job {
	pub fn new(id: i64, location: usize, time_window: (i64, i64), service_time: i64) -> Job {
		Job {
			id,
			location,
			time_window: TimeWindow {
				start: time_window.0,
				end: time_window.1,
			},
			service_time
		}
	}
}

pub struct Vehicle {
	id: i64,
	start_location: usize,
	end_location: usize,
	time_window: TimeWindow,
}

impl Vehicle {
	pub fn new(id: i64, start_location: usize, end_location: usize, time_window: (i64, i64)) -> Vehicle {
		Vehicle {
			id,
			start_location,
			end_location,
			time_window: TimeWindow {
				start: time_window.0,
				end: time_window.1,
			}
		}
	}
}

pub struct CostMatrix {
	elements: Vec<Vec<i64>>,
}

impl CostMatrix {
	pub fn new() -> CostMatrix {
		let mut matrix: Vec<Vec<i64>> = vec!();

		for i in 0..100 {
			let mut row = vec!();
			for j in 0..100 {
				if i == j {
					row.push(0);
				} else {
					row.push(j);
				}
			}
			matrix.push(row);
		}

		CostMatrix{
			elements: matrix,
		}
	}

	pub fn get_time(&self, i: usize, j: usize) -> i64 {
		self.elements[i][j]
	}
}