1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
use crate::{
    cast,
    gc::{Event, GcPtr, GcRuntime, Observer, RawGcPtr, Stats, TypeTrace},
    mapping::{self, FieldMapping, MemoryMapper},
    TypeDesc, TypeMemory,
};
use mapping::{Conversion, Mapping};
use parking_lot::RwLock;
use std::{
    collections::{HashMap, VecDeque},
    hash::Hash,
    ops::Deref,
    pin::Pin,
    ptr::NonNull,
};

/// Implements a simple mark-sweep type garbage collector.
#[derive(Debug)]
pub struct MarkSweep<T, O>
where
    T: TypeMemory + TypeTrace + Clone,
    O: Observer<Event = Event>,
{
    objects: RwLock<HashMap<GcPtr, Pin<Box<ObjectInfo<T>>>>>,
    observer: O,
    stats: RwLock<Stats>,
}

impl<T, O> Default for MarkSweep<T, O>
where
    T: TypeMemory + TypeTrace + Clone,
    O: Observer<Event = Event> + Default,
{
    fn default() -> Self {
        MarkSweep {
            objects: RwLock::new(HashMap::new()),
            observer: O::default(),
            stats: RwLock::new(Stats::default()),
        }
    }
}

impl<T, O> MarkSweep<T, O>
where
    T: TypeMemory + TypeTrace + Clone,
    O: Observer<Event = Event>,
{
    /// Creates a `MarkSweep` memory collector with the specified `Observer`.
    pub fn with_observer(observer: O) -> Self {
        Self {
            objects: RwLock::new(HashMap::new()),
            observer,
            stats: RwLock::new(Stats::default()),
        }
    }

    /// Logs an allocation
    fn log_alloc(&self, handle: GcPtr, ty: T) {
        {
            let mut stats = self.stats.write();
            stats.allocated_memory += ty.layout().size();
        }

        self.observer.event(Event::Allocation(handle));
    }

    /// Returns the observer
    pub fn observer(&self) -> &O {
        &self.observer
    }
}

fn alloc_obj<T: Clone + TypeMemory + TypeTrace>(ty: T) -> Pin<Box<ObjectInfo<T>>> {
    let ptr = unsafe { std::alloc::alloc(ty.layout()) };
    Box::pin(ObjectInfo {
        ptr,
        ty,
        roots: 0,
        color: Color::White,
    })
}

impl<T, O> GcRuntime<T> for MarkSweep<T, O>
where
    T: TypeMemory + TypeTrace + Clone,
    O: Observer<Event = Event>,
{
    fn alloc(&self, ty: T) -> GcPtr {
        let object = alloc_obj(ty.clone());

        // We want to return a pointer to the `ObjectInfo`, to be used as handle.
        let handle = (object.as_ref().deref() as *const _ as RawGcPtr).into();

        {
            let mut objects = self.objects.write();
            objects.insert(handle, object);
        }

        self.log_alloc(handle, ty);
        handle
    }

    fn ptr_type(&self, handle: GcPtr) -> T {
        let _ = self.objects.read();

        // Convert the handle to our internal representation
        let object_info: *const ObjectInfo<T> = handle.into();

        // Return the type of the object
        unsafe { (*object_info).ty.clone() }
    }

    fn root(&self, handle: GcPtr) {
        let _ = self.objects.write();

        // Convert the handle to our internal representation
        let object_info: *mut ObjectInfo<T> = handle.into();

        unsafe { (*object_info).roots += 1 };
    }

    fn unroot(&self, handle: GcPtr) {
        let _ = self.objects.write();

        // Convert the handle to our internal representation
        let object_info: *mut ObjectInfo<T> = handle.into();

        unsafe { (*object_info).roots -= 1 };
    }

    fn stats(&self) -> Stats {
        self.stats.read().clone()
    }
}

impl<T, O> MarkSweep<T, O>
where
    T: TypeMemory + TypeTrace + Clone,
    O: Observer<Event = Event>,
{
    /// Collects all memory that is no longer referenced by rooted objects. Returns `true` if memory
    /// was reclaimed, `false` otherwise.
    pub fn collect(&self) -> bool {
        self.observer.event(Event::Start);

        let mut objects = self.objects.write();

        // Get all roots
        let mut roots = objects
            .iter()
            .filter_map(|(_, obj)| {
                if obj.roots > 0 {
                    Some(obj.as_ref().get_ref() as *const _ as *mut ObjectInfo<T>)
                } else {
                    None
                }
            })
            .collect::<VecDeque<_>>();

        // Iterate over all roots
        while let Some(next) = roots.pop_front() {
            let handle = (next as *const _ as RawGcPtr).into();

            // Trace all other objects
            for reference in unsafe { (*next).ty.trace(handle) } {
                let ref_ptr = objects
                    .get_mut(&reference)
                    .expect("found invalid reference");
                if ref_ptr.color == Color::White {
                    let ptr = ref_ptr.as_ref().get_ref() as *const _ as *mut ObjectInfo<T>;
                    unsafe { (*ptr).color = Color::Gray };
                    roots.push_back(ptr);
                }
            }

            // This object has been traced
            unsafe {
                (*next).color = Color::Black;
            }
        }

        // Sweep all non-reachable objects
        let size_before = objects.len();
        objects.retain(|h, obj| {
            if obj.color == Color::Black {
                unsafe {
                    obj.as_mut().get_unchecked_mut().color = Color::White;
                }
                true
            } else {
                unsafe { std::alloc::dealloc(obj.ptr, obj.ty.layout()) };
                self.observer.event(Event::Deallocation(*h));
                {
                    let mut stats = self.stats.write();
                    stats.allocated_memory -= obj.ty.layout().size();
                }
                false
            }
        });
        let size_after = objects.len();

        self.observer.event(Event::End);

        size_before != size_after
    }
}

impl<T, O> MemoryMapper<T> for MarkSweep<T, O>
where
    T: TypeDesc + TypeMemory + TypeTrace + Clone + Eq + Hash,
    O: Observer<Event = Event>,
{
    fn map_memory(&self, mapping: Mapping<T, T>) -> Vec<GcPtr> {
        let mut objects = self.objects.write();

        // Determine which types are still allocated with deleted types
        let deleted = objects
            .iter()
            .filter_map(|(ptr, object_info)| {
                if mapping.deletions.contains(&object_info.ty) {
                    Some(*ptr)
                } else {
                    None
                }
            })
            .collect();

        // Update type pointers of types that didn't change
        for (old_ty, new_ty) in mapping.identical {
            for object_info in objects.values_mut() {
                if object_info.ty == old_ty {
                    object_info.set(ObjectInfo {
                        ptr: object_info.ptr,
                        roots: object_info.roots,
                        color: object_info.color,
                        ty: new_ty.clone(),
                    });
                }
            }
        }

        let mut new_allocations = Vec::new();

        for (old_ty, conversion) in mapping.conversions.iter() {
            for object_info in objects.values_mut() {
                if object_info.ty == *old_ty {
                    let src = unsafe { NonNull::new_unchecked(object_info.ptr) };
                    let dest = unsafe {
                        NonNull::new_unchecked(std::alloc::alloc_zeroed(conversion.new_ty.layout()))
                    };

                    map_fields(
                        self,
                        &mut new_allocations,
                        &mapping.conversions,
                        &conversion.field_mapping,
                        src,
                        dest,
                    );

                    unsafe { std::alloc::dealloc(src.as_ptr(), old_ty.layout()) };

                    object_info.set(ObjectInfo {
                        ptr: dest.as_ptr(),
                        roots: object_info.roots,
                        color: object_info.color,
                        ty: conversion.new_ty.clone(),
                    });
                }
            }
        }

        // Retroactively store newly allocated objects
        // This cannot be done while mapping because we hold a mutable reference to objects
        for object in new_allocations {
            let ty = object.ty.clone();
            // We want to return a pointer to the `ObjectInfo`, to
            // be used as handle.
            let handle = (object.as_ref().deref() as *const _ as RawGcPtr).into();
            objects.insert(handle, object);

            self.log_alloc(handle, ty);
        }

        return deleted;

        fn map_fields<T, O>(
            gc: &MarkSweep<T, O>,
            new_allocations: &mut Vec<Pin<Box<ObjectInfo<T>>>>,
            conversions: &HashMap<T, Conversion<T>>,
            mapping: &[FieldMapping<T>],
            src: NonNull<u8>,
            dest: NonNull<u8>,
        ) where
            T: TypeDesc + TypeMemory + TypeTrace + Clone + Eq + Hash,
            O: Observer<Event = Event>,
        {
            for FieldMapping {
                new_ty,
                new_offset,
                action,
            } in mapping.iter()
            {
                let field_dest = {
                    let mut dest = dest.as_ptr() as usize;
                    dest += new_offset;
                    dest as *mut u8
                };

                match action {
                    mapping::Action::Cast { old_offset, old_ty } => {
                        let field_src = {
                            let mut src = src.as_ptr() as usize;
                            src += old_offset;
                            src as *mut u8
                        };

                        if old_ty.group().is_struct() {
                            debug_assert!(new_ty.group().is_struct());

                            // When the name is the same, we are dealing with the same struct,
                            // but different internals
                            let is_same_struct = old_ty.name() == new_ty.name();

                            // If the same struct changed, there must also be a conversion
                            let conversion = conversions.get(old_ty);

                            if old_ty.is_stack_allocated() {
                                if new_ty.is_stack_allocated() {
                                    // struct(value) -> struct(value)
                                    if is_same_struct {
                                        // Map in-memory struct to in-memory struct
                                        map_fields(
                                            gc,
                                            new_allocations,
                                            conversions,
                                            &conversion.as_ref().unwrap().field_mapping,
                                            unsafe { NonNull::new_unchecked(field_src) },
                                            unsafe { NonNull::new_unchecked(field_dest) },
                                        );
                                    } else {
                                        // Use previously zero-initialized memory
                                    }
                                } else {
                                    // struct(value) -> struct(gc)
                                    let object = alloc_obj(new_ty.clone());

                                    // We want to return a pointer to the `ObjectInfo`, to be used as handle.
                                    let handle =
                                        (object.as_ref().deref() as *const _ as RawGcPtr).into();

                                    if is_same_struct {
                                        // Map in-memory struct to heap-allocated struct
                                        map_fields(
                                            gc,
                                            new_allocations,
                                            conversions,
                                            &conversion.as_ref().unwrap().field_mapping,
                                            unsafe { NonNull::new_unchecked(field_src) },
                                            unsafe { NonNull::new_unchecked(object.ptr) },
                                        );
                                    } else {
                                        // Zero initialize heap-allocated object
                                        unsafe {
                                            std::ptr::write_bytes(
                                                (*object).ptr,
                                                0,
                                                new_ty.layout().size(),
                                            )
                                        };
                                    }

                                    // Write handle to field
                                    let field_handle = field_dest.cast::<GcPtr>();
                                    unsafe { *field_handle = handle };

                                    new_allocations.push(object);
                                }
                            } else if !new_ty.is_stack_allocated() {
                                // struct(gc) -> struct(gc)
                                let field_src = field_src.cast::<GcPtr>();
                                let field_dest = field_dest.cast::<GcPtr>();

                                if is_same_struct {
                                    // Only copy the `GcPtr`. Memory will already be mapped.
                                    unsafe {
                                        *field_dest = *field_src;
                                    }
                                } else {
                                    let object = alloc_obj(new_ty.clone());

                                    // We want to return a pointer to the `ObjectInfo`, to
                                    // be used as handle.
                                    let handle =
                                        (object.as_ref().deref() as *const _ as RawGcPtr).into();

                                    // Zero-initialize heap-allocated object
                                    unsafe {
                                        std::ptr::write_bytes(object.ptr, 0, new_ty.layout().size())
                                    };

                                    // Write handle to field
                                    unsafe {
                                        *field_dest = handle;
                                    }

                                    new_allocations.push(object);
                                }
                            } else {
                                // struct(gc) -> struct(value)
                                let field_handle = unsafe { *field_src.cast::<GcPtr>() };

                                // Convert the handle to our internal representation
                                // Safety: we already hold a write lock on `objects`, so
                                // this is legal.
                                let obj: *mut ObjectInfo<T> = field_handle.into();
                                let obj = unsafe { &*obj };

                                if is_same_struct {
                                    if obj.ty == *old_ty {
                                        // The object still needs to be mapped
                                        // Map heap-allocated struct to in-memory struct
                                        map_fields(
                                            gc,
                                            new_allocations,
                                            conversions,
                                            &conversion.as_ref().unwrap().field_mapping,
                                            unsafe { NonNull::new_unchecked(obj.ptr) },
                                            unsafe { NonNull::new_unchecked(field_dest) },
                                        );
                                    } else {
                                        // The object was already mapped
                                        debug_assert!(obj.ty == *new_ty);

                                        // Copy from heap-allocated struct to in-memory struct
                                        unsafe {
                                            std::ptr::copy_nonoverlapping(
                                                obj.ptr,
                                                field_dest,
                                                obj.ty.layout().size(),
                                            )
                                        };
                                    }
                                } else {
                                    // Use previously zero-initialized memory
                                }
                            }
                        } else if !cast::try_cast_from_to(
                            *old_ty.guid(),
                            *new_ty.guid(),
                            unsafe { NonNull::new_unchecked(field_src) },
                            unsafe { NonNull::new_unchecked(field_dest) },
                        ) {
                            // Failed to cast. Use the previously zero-initialized value instead
                        }
                    }
                    mapping::Action::Copy { old_offset } => {
                        let field_src = {
                            let mut src = src.as_ptr() as usize;
                            src += old_offset;
                            src as *mut u8
                        };

                        unsafe {
                            std::ptr::copy_nonoverlapping(
                                field_src,
                                field_dest,
                                new_ty.layout().size(),
                            )
                        };
                    }
                    mapping::Action::Insert => {
                        if !new_ty.is_stack_allocated() {
                            let object = alloc_obj(new_ty.clone());

                            // We want to return a pointer to the `ObjectInfo`, to be used as
                            // handle.
                            let handle = (object.as_ref().deref() as *const _ as RawGcPtr).into();

                            // Zero-initialize heap-allocated object
                            unsafe { std::ptr::write_bytes(object.ptr, 0, new_ty.layout().size()) };

                            // Write handle to field
                            let field_dest = field_dest.cast::<GcPtr>();
                            unsafe {
                                *field_dest = handle;
                            }

                            new_allocations.push(object);
                        } else {
                            // Use the previously zero-initialized value
                        }
                    }
                }
            }
        }
    }
}

/// Coloring used in the Mark Sweep phase.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
enum Color {
    /// A white object has not been seen yet by the mark phase
    White,

    /// A gray object has been seen by the mark phase but has not yet been visited
    Gray,

    /// A black object has been visited by the mark phase
    Black,
}

/// An indirection table that stores the address to the actual memory, the type of the object and
/// meta information.
#[derive(Debug)]
#[repr(C)]
struct ObjectInfo<T: TypeMemory + TypeTrace + Clone> {
    pub ptr: *mut u8,
    pub roots: u32,
    pub color: Color,
    pub ty: T,
}

/// An `ObjectInfo` is thread-safe.
unsafe impl<T: TypeMemory + TypeTrace + Clone> Send for ObjectInfo<T> {}
unsafe impl<T: TypeMemory + TypeTrace + Clone> Sync for ObjectInfo<T> {}

impl<T: TypeMemory + TypeTrace + Clone> Into<*const ObjectInfo<T>> for GcPtr {
    fn into(self) -> *const ObjectInfo<T> {
        self.as_ptr() as *const ObjectInfo<T>
    }
}

impl<T: TypeMemory + TypeTrace + Clone> Into<*mut ObjectInfo<T>> for GcPtr {
    fn into(self) -> *mut ObjectInfo<T> {
        self.as_ptr() as *mut ObjectInfo<T>
    }
}

impl<T: TypeMemory + TypeTrace + Clone> Into<GcPtr> for *const ObjectInfo<T> {
    fn into(self) -> GcPtr {
        (self as RawGcPtr).into()
    }
}

impl<T: TypeMemory + TypeTrace + Clone> Into<GcPtr> for *mut ObjectInfo<T> {
    fn into(self) -> GcPtr {
        (self as RawGcPtr).into()
    }
}