1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
#![no_std]

mod entry;
mod iter;

#[cfg(test)]
mod tests;

extern crate alloc;

use self::entry::{Entry, OccupiedEntry, VacantEntry};
pub use self::iter::{IntoIter, Iter, IterMut};
use alloc::vec::Vec;
use core::mem;
use core::num::NonZeroUsize;
use core::ops::{Index, IndexMut};

/// A vector-like data structure that is able to reuse slots for new elements.
///
/// Specifically allows for (armortized) O(1) instructions for:
///
/// - [`MultiStash::put`]
/// - [`MultiStash::take_one`]
/// - [`MultiStash::take_all`]
/// - [`MultiStash::get`]
/// - [`MultiStash::get_mut`]
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct MultiStash<T> {
    /// The next vacant or free slot to allocate.
    free: usize,
    /// The number of items stored in the [`MultiStash`].
    ///
    /// # Note
    ///
    /// Each [`Entry::Occupied`] might store multiple items.
    len_items: usize,
    /// The number of occupied entries in the [`MultiStash`].
    ///
    /// # Note
    ///
    /// Each [`Entry::Occupied`] might store multiple items.
    len_occupied: usize,
    /// The entries of the [`MultiStash`].
    entries: Vec<Entry<T>>,
}

/// Allows to access elements stored in a [`MultiStash`].
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Key(usize);

impl From<usize> for Key {
    #[inline]
    fn from(index: usize) -> Self {
        Self(index)
    }
}

impl From<Key> for usize {
    #[inline]
    fn from(key: Key) -> Self {
        key.0
    }
}

impl<T> Default for MultiStash<T> {
    fn default() -> Self {
        Self::new()
    }
}

impl<T> MultiStash<T> {
    /// Construct a new, empty [`MultiStash`].
    ///
    /// The [`MultiStash`] will not allocate until items are put into it.
    pub fn new() -> Self {
        Self {
            free: 0,
            len_items: 0,
            len_occupied: 0,
            entries: Vec::new(),
        }
    }

    /// Constructs a new, empty [`MultiStash`] with at least the specified capacity.
    ///
    /// The [`MultiStash`] will be able to hold at least `capacity` elements without reallocating.
    /// This method is allowed to allocate for more elements than `capacity`.
    /// If `capacity` is 0, the [`MultiStash`] will not allocate.
    ///
    /// It is important to note that although the returned [`MultiStash`] has the minimum
    /// *capacity* specified, the [`MultiStash`] will have a zero length.
    /// For an explanation of the difference between length and capacity, see *[Capacity and reallocation]*.
    ///
    /// If it is important to know the exact allocated capacity of a [`MultiStash`],
    /// always use the [`capacity`] method after construction.
    ///
    /// # Panics
    ///
    /// Panics if the new capacity exceeds `isize::MAX` bytes.
    ///
    /// [Capacity and reallocation]: https://doc.rust-lang.org/std/vec/struct.Vec.html#capacity-and-reallocation
    /// [`capacity`]: MultiStash::capacity
    pub fn with_capacity(capacity: usize) -> Self {
        Self {
            free: 0,
            len_items: 0,
            len_occupied: 0,
            entries: Vec::with_capacity(capacity),
        }
    }

    /// Returns the total number of elements the [`MultiStash`] can hold without reallocating.
    pub fn capacity(&self) -> usize {
        self.entries.capacity()
    }

    /// Reserves capacity for at least `additional` more elements to be inserted
    /// in the given [`MultiStash`]. The collection may reserve more space to
    /// speculatively avoid frequent reallocations. After calling `reserve`,
    /// capacity will be greater than or equal to `self.len() + additional`.
    /// Does nothing if capacity is already sufficient.
    ///
    /// # Panics
    ///
    /// Panics if the new capacity exceeds `isize::MAX` bytes.
    pub fn reserve(&mut self, additional: usize) {
        self.entries.reserve(additional);
    }

    /// Reserves the minimum capacity for at least `additional` more elements to
    /// be inserted in the given [`MultiStash`]. Unlike [`reserve`], this will not
    /// deliberately over-allocate to speculatively avoid frequent allocations.
    /// After calling `reserve_exact`, capacity will be greater than or equal to
    /// `self.len() + additional`. Does nothing if the capacity is already
    /// sufficient.
    ///
    /// Note that the allocator may give the collection more space than it
    /// requests. Therefore, capacity can not be relied upon to be precisely
    /// minimal. Prefer [`reserve`] if future insertions are expected.
    ///
    /// [`reserve`]: MultiStash::reserve
    ///
    /// # Panics
    ///
    /// Panics if the new capacity exceeds `isize::MAX` bytes.
    pub fn reserve_exact(&mut self, additional: usize) {
        self.entries.reserve_exact(additional);
    }

    /// Returns the number of vacant or occupied [`Entry`] in the [`MultiStash`].
    fn len_entries(&self) -> usize {
        self.entries.len()
    }

    /// Returns the number of items in the [`MultiStash`].
    ///
    /// # Note
    ///
    /// A single element might store multiple items.
    pub fn len_items(&self) -> usize {
        self.len_items
    }

    /// Returns the number of elements in the [`MultiStash`].
    ///
    /// # Note
    ///
    /// A single element might store multiple items.
    fn len_occupied(&self) -> usize {
        self.len_occupied
    }

    /// Returns the number of elements in the [`MultiStash`].
    ///
    /// # Note
    ///
    /// A single element might store multiple items.
    pub fn len(&self) -> usize {
        self.len_occupied()
    }

    /// Returns `true` if the [`MultiStash`] contains no elements.
    pub fn is_empty(&self) -> bool {
        self.len_occupied() == 0
    }

    /// Returns a reference to an element at the `key` if any.
    pub fn get(&self, key: Key) -> Option<(usize, &T)> {
        match self.entries.get(key.0) {
            Some(Entry::Occupied(entry)) => Some((entry.remaining.get(), &entry.item)),
            _ => None,
        }
    }

    /// Returns a mutable reference to an element at the `key` if any.
    pub fn get_mut(&mut self, key: Key) -> Option<(usize, &mut T)> {
        match self.entries.get_mut(key.0) {
            Some(Entry::Occupied(entry)) => Some((entry.remaining.get(), &mut entry.item)),
            _ => None,
        }
    }

    /// Puts an `amount` of `item` into the [`MultiStash`].
    ///
    /// # Panics
    ///
    /// Panics if the new capacity exceeds `isize::MAX` bytes.
    pub fn put(&mut self, amount: NonZeroUsize, item: T) -> Key {
        let key = Key(self.free);
        self.free = if self.free == self.len_entries() {
            self.entries
                .push(Entry::from(OccupiedEntry::new(item, amount)));
            self.free.checked_add(1).unwrap()
        } else {
            // # Safety: It is an invariant of `MultiStash` that `self.free` only ever stores
            //           indices to populated entries in `self.items` if `self.free != self.len_entries()`.
            let cell = unsafe { self.entries.get_unchecked_mut(self.free) };
            match mem::replace(cell, Entry::from(OccupiedEntry::new(item, amount))) {
                Entry::Vacant(entry) => entry.next_free,
                _ => unreachable!(
                    "asserted that the entry at `self.free` ({}) is vacant",
                    self.free
                ),
            }
        };
        self.bump_len_items(amount.get());
        self.len_occupied += 1;
        key
    }

    /// Bumps the number of items in the [`MultiStash`] by `amount`.
    ///
    /// # Panics
    ///
    /// If the number of items in the [`MultiStash`] overflows.
    fn bump_len_items(&mut self, amount: usize) {
        self.len_items = self.len_items.checked_add(amount).unwrap_or_else(|| {
            panic!(
                "failed to add {} items to MultiStash of length {}",
                amount, self.len_items
            )
        });
    }

    /// Clears the [`MultiStash`], removing all elements.
    ///
    /// Note that this method has no effect on the allocated capacity of the vector.
    pub fn clear(&mut self) {
        self.free = 0;
        self.len_items = 0;
        self.len_occupied = 0;
        self.entries.clear();
    }

    /// Removes and returns the `element` at `key` and its amount of remaining items.
    ///
    /// Returns `None` if `key` refers to a vacant entry or is out of bounds.
    pub fn take_all(&mut self, key: Key) -> Option<(usize, T)> {
        let index = key.0;
        let taken = match self.entries.get_mut(index) {
            None => None,
            Some(entry) => match mem::replace(entry, Entry::from(VacantEntry::new(self.free))) {
                Entry::Vacant(vacant) => {
                    *entry = Entry::from(VacantEntry::new(vacant.next_free));
                    None
                }
                Entry::Occupied(occupied) => {
                    self.free = index;
                    let item = occupied.item;
                    let len_taken = occupied.remaining.get();
                    self.len_items -= len_taken;
                    self.len_occupied -= 1;
                    Some((len_taken, item))
                }
            },
        };
        if self.is_empty() {
            self.clear()
        }
        taken
    }

    /// Bumps the amount of items of the element at `key` if any.
    ///
    /// Returns `None` if not element is found at the `key`.
    ///
    /// # Panics
    ///
    /// Panics if `amount` of the element at `key` overflows.
    pub fn bump(&mut self, key: Key, amount: usize) -> Option<usize> {
        let index = key.0;
        match self.entries.get_mut(index)? {
            Entry::Vacant(_) => None,
            Entry::Occupied(entry) => {
                let old_amount = entry.remaining;
                let new_amount = old_amount.checked_add(amount).unwrap_or_else(|| {
                    panic!(
                        "overflow when adding {} to the amount of MultiStash element at {}",
                        amount, index,
                    )
                });
                entry.remaining = new_amount;
                self.bump_len_items(amount);
                Some(old_amount.get())
            }
        }
    }

    /// Returns an iterator over the elements of the [`MultiStash`].
    ///
    /// The iterator yields all elements, their keys and remaining items from start to end.
    pub fn iter(&self) -> Iter<T> {
        Iter::new(self)
    }

    /// Returns an iterator over the elements of the [`MultiStash`].
    ///
    /// The iterator yields mutable references to all elements, their keys and remaining items from start to end.
    pub fn iter_mut(&mut self) -> IterMut<T> {
        IterMut::new(self)
    }
}

impl<T: Clone> MultiStash<T> {
    /// Returns a single item of the `element` at `key`
    /// and the amount of remaining items after this operation.
    ///
    /// Remove the `element` if no items are left after this operation.
    /// Returns `None` if `key` refers to a vacant entry or is out of bounds.
    pub fn take_one(&mut self, key: Key) -> Option<(usize, T)> {
        let index = key.0;
        let taken = match self.entries.get_mut(index) {
            None => None,
            Some(entry) => match mem::replace(entry, Entry::from(VacantEntry::new(self.free))) {
                Entry::Vacant(vacant) => {
                    *entry = Entry::from(VacantEntry::new(vacant.next_free));
                    None
                }
                Entry::Occupied(occupied) => {
                    let item = occupied.item;
                    self.len_items -= 1;
                    match NonZeroUsize::new(occupied.remaining.get().wrapping_sub(1)) {
                        Some(remaining) => {
                            *entry = Entry::from(OccupiedEntry::new(item.clone(), remaining));
                            Some((remaining.get(), item))
                        }
                        None => {
                            self.len_occupied -= 1;
                            self.free = index;
                            Some((0, item))
                        }
                    }
                }
            },
        };
        if self.is_empty() {
            self.clear()
        }
        taken
    }
}

impl<'a, T> IntoIterator for &'a MultiStash<T> {
    type Item = (Key, usize, &'a T);
    type IntoIter = Iter<'a, T>;

    fn into_iter(self) -> Self::IntoIter {
        self.iter()
    }
}

impl<'a, T> IntoIterator for &'a mut MultiStash<T> {
    type Item = (Key, usize, &'a mut T);
    type IntoIter = IterMut<'a, T>;

    fn into_iter(self) -> Self::IntoIter {
        self.iter_mut()
    }
}

impl<T> IntoIterator for MultiStash<T> {
    type Item = (Key, usize, T);
    type IntoIter = IntoIter<T>;

    fn into_iter(self) -> Self::IntoIter {
        IntoIter::new(self)
    }
}

impl<T> Index<Key> for MultiStash<T> {
    type Output = T;

    fn index(&self, key: Key) -> &Self::Output {
        self.get(key)
            .map(|(_, item)| item)
            .unwrap_or_else(|| panic!("found no item at index {}", key.0))
    }
}

impl<T> IndexMut<Key> for MultiStash<T> {
    fn index_mut(&mut self, key: Key) -> &mut Self::Output {
        self.get_mut(key)
            .map(|(_, item)| item)
            .unwrap_or_else(|| panic!("found no item at index {}", key.0))
    }
}

impl<T> Extend<(NonZeroUsize, T)> for MultiStash<T> {
    fn extend<I: IntoIterator<Item = (NonZeroUsize, T)>>(&mut self, iter: I) {
        for (amount, item) in iter {
            self.put(amount, item);
        }
    }
}

impl<T> FromIterator<(NonZeroUsize, T)> for MultiStash<T> {
    fn from_iter<I: IntoIterator<Item = (NonZeroUsize, T)>>(iter: I) -> Self {
        let mut stash = Self::new();
        stash.extend(iter);
        stash
    }
}