1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
/*!
Generate lexicographically-evenly-spaced strings between two strings
from pre-defined alphabets.

This is a rewrite of [mudderjs](https://github.com/fasiha/mudderjs); thanks
for the original work of the author and their contributors!

## Usage
Add a dependency in your Cargo.toml:

```toml
mudders = "0.0.4"
```

Now you can generate lexicographically-spaced strings in a few different ways:

```
use mudders::SymbolTable;
// The mudder method takes a NonZeroUsize as the amount,
// so you cannot pass in an invalid value.
use std::num::NonZeroUsize;

// You can use the included alphabet table
let table = SymbolTable::alphabet();
// SymbolTable::mudder() returns a Vec containing `amount` Strings.
let result = table.mudder_one("a", "z").unwrap();
// These strings are always lexicographically placed between `start` and `end`.
let one_str = result.as_str();
assert!(one_str > "a");
assert!(one_str < "z");

// You can also define your own symbol tables
let table = SymbolTable::from_chars(&['a', 'b']).unwrap();
let result = table.mudder("a", "b", NonZeroUsize::new(2).unwrap()).unwrap();
assert_eq!(result.len(), 2);
assert!(result[0].as_str() > "a" && result[1].as_str() > "a");
assert!(result[0].as_str() < "b" && result[1].as_str() < "b");

// The strings *should* be evenly-spaced and as short as they can be.
let table = SymbolTable::alphabet();
let result = table.mudder("anhui", "azazel", NonZeroUsize::new(3).unwrap()).unwrap();
assert_eq!(result.len(), 3);
assert_eq!(vec!["aq", "as", "av"], result);
```

## Notes
The most notable difference to Mudder.js is that currently, mudders only
supports ASCII characters (because 127 characters ought to be enough for
everyone™). Our default `::alphabet()` also only has lowercase letters.

*/

use core::num::NonZeroUsize;
use std::{convert::TryFrom, str::FromStr};

#[macro_use]
pub mod error;
use error::*;

/// The functionality of the crate lives here.
///
/// A symbol table is, internally, a vector of valid ASCII bytes that are used
/// to generate lexicographically evenly-spaced strings.
#[derive(Clone, Debug)]
pub struct SymbolTable(Vec<u8>);

impl SymbolTable {
    /// Creates a new symbol table from the given byte slice.
    /// The slice is internally sorted using `.sort()`.
    ///
    /// An error is returned if one of the given bytes is out of ASCII range.
    pub fn new(source: &[u8]) -> Result<Self, CreationError> {
        ensure! { !source.is_empty(), CreationError::EmptySlice }
        ensure! { all_chars_ascii(&source), NonAsciiError::NonAsciiU8 }
        // Copy the values, we need to own them anyways...
        let mut vec: Vec<_> = source.iter().copied().collect();
        // Sort them so they're actually in order.
        // (You can pass in ['b', 'a'], but that's not usable internally I think.)
        vec.sort();
        vec.dedup();
        Ok(Self(vec))
    }

    /// Creates a new symbol table from the given characters.
    /// The slice is internally sorted using `.sort()`.
    ///
    /// An error is returned if one of the given characters is not ASCII.
    pub fn from_chars(source: &[char]) -> Result<Self, CreationError> {
        let inner: Box<[u8]> = source
            .iter()
            .map(|c| try_ascii_u8_from_char(*c))
            .collect::<Result<_, _>>()?;
        Ok(Self::new(&inner)?)
    }

    /// Returns a SymbolTable which contains the lowercase latin alphabet (`[a-z]`).
    #[allow(clippy::char_lit_as_u8)]
    pub fn alphabet() -> Self {
        Self::new(&('a' as u8..='z' as u8).collect::<Box<[_]>>()).unwrap()
    }

    /// Generate `amount` strings that lexicographically sort between `start` and `end`.
    /// The algorithm will try to make them as evenly-spaced as possible.
    ///
    /// When both parameters are empty strings, `amount` new strings that are
    /// in lexicographical order are returned.
    ///
    /// If parameter `b` is lexicographically before `a`, they are swapped internally.
    ///
    /// ```
    /// # use mudders::SymbolTable;
    /// # use std::num::NonZeroUsize;
    /// // Using the included alphabet table
    /// let table = SymbolTable::alphabet();
    /// // Generate 10 strings from scratch
    /// let results = table.mudder("", "", NonZeroUsize::new(10).unwrap()).unwrap();
    /// assert!(results.len() == 10);
    /// // results should look something like ["b", "d", "f", ..., "r", "t"]
    /// ```
    pub fn mudder(
        &self,
        a: &str,
        b: &str,
        amount: NonZeroUsize,
    ) -> Result<Vec<String>, GenerationError> {
        use error::InternalError::*;
        use GenerationError::*;
        ensure! { all_chars_ascii(a), NonAsciiError::NonAsciiU8 }
        ensure! { all_chars_ascii(b), NonAsciiError::NonAsciiU8 }
        ensure! { self.contains_all_chars(a), UnknownCharacters(a.to_string()) }
        ensure! { self.contains_all_chars(b), UnknownCharacters(b.to_string()) }
        let (a, b) = if a.is_empty() || b.is_empty() {
            // If an argument is empty, keep the order
            (a, b)
        } else if b < a {
            // If they're not empty and b is lexicographically prior to a, swap them
            (b, a)
        } else {
            // You can't generate values between two matching strings.
            ensure! { a != b, MatchingStrings(a.to_string()) }
            // In any other case, keep the order
            (a, b)
        };

        // TODO: Check for lexicographical adjacency!
        //ensure! { !lex_adjacent(a, b), LexAdjacentStrings(a.to_string(), b.to_string()) }

        // Count the characters start and end have in common.
        let matching_count: usize = {
            // Iterate through the chars of both given inputs...
            let (mut start_chars, mut end_chars) = (a.chars(), b.chars());
            // We need to keep track of this, because:
            // In the case of `a` == `"a"` and `b` == `"aab"`,
            // we actually need to compare `""` to `"b"` later on, not `""` to `"a"`.
            let mut last_start_char = '\0';
            // Counting to get the index.
            let mut i: usize = 0;
            loop {
                // Advance the iterators...
                match (start_chars.next(), end_chars.next()) {
                    // As long as there's two characters that match, increment i.
                    (Some(sc), Some(ec)) if sc == ec => {
                        last_start_char = sc;
                        i += 1;
                        continue;
                    }
                    // If start_chars have run out, but end_chars haven't, check
                    // if the current end char matches the last start char.
                    // If it does, we still need to increment our counter.
                    (None, Some(ec)) if ec == last_start_char => {
                        i += 1;
                        continue;
                    }
                    // break with i as soon as any mismatch happens or both iterators run out.
                    // matching_count will either be 0, indicating that there's
                    // no leading common pattern, or something other than 0, in
                    // that case it's the count of common characters.
                    (None, None) | (Some(_), None) | (None, Some(_)) | (Some(_), Some(_)) => {
                        break i
                    }
                }
            }
        };

        // Count the number to add to the total requests amount.
        // If a or b is empty, we need one item less in the pool;
        // two items less if both are empty.
        let non_empty_input_count = [a, b].iter().filter(|s| !s.is_empty()).count();
        // For convenience
        let computed_amount = || amount.get() + non_empty_input_count;

        // Calculate the distance between the first non-matching characters.
        // If matching_count is greater than 0, we have leading common chars,
        // so we skip those, but add the amount to the depth base.
        let branching_factor = self.distance_between_first_chars(
            //            v--- matching_count might be higher than a.len()
            //           vvv   because we might count past a's end
            &a[std::cmp::min(matching_count, a.len())..],
            &b[matching_count..],
        )?;
        // We also add matching_count to the depth because if we're starting
        // with a common prefix, we have at least x leading characters that
        // will be the same for all substrings.
        let mut depth =
            depth_for(dbg!(branching_factor), dbg!(computed_amount())) + dbg!(matching_count);

        // if branching_factor == 1 {
        //     // This should only be the case when we have an input like `"z", ""`.
        //     // In this case, we can generate strings after the z, but we need
        //     // to go one level deeper in any case.
        //     depth += 1;
        // }

        // TODO: Maybe keeping this as an iterator would be more efficient,
        // but it would have to be cloned at least once to get the pool length.
        let pool: Vec<String> = self.traverse("".into(), a, b, dbg!(depth)).collect();
        let pool = if (pool.len() as isize).saturating_sub(non_empty_input_count as isize)
            < amount.get() as isize
        {
            depth += depth_for(branching_factor, computed_amount() + pool.len());
            dbg!(self.traverse("".into(), a, b, dbg!(depth)).collect())
        } else {
            pool
        };
        if (pool.len() as isize).saturating_sub(non_empty_input_count as isize)
            < amount.get() as isize
        {
            // We still don't have enough items, so bail
            panic!(
                "Internal error: Failed to calculate the correct tree depth!
This is a bug. Please report it at: https://github.com/Follpvosten/mudders/issues
and make sure to include the following information:

Symbols in table: {symbols:?}
Given inputs: {a:?}, {b:?}, amount: {amount}
matching_count: {m_count}
non_empty_input_count: {ne_input_count}
required pool length (computed amount): {comp_amount}
branching_factor: {b_factor}
final depth: {depth}
pool: {pool:?} (length: {pool_len})",
                symbols = self.0.iter().map(|i| *i as char).collect::<Box<[_]>>(),
                a = a,
                b = b,
                amount = amount,
                m_count = matching_count,
                ne_input_count = non_empty_input_count,
                comp_amount = computed_amount(),
                b_factor = branching_factor,
                depth = depth,
                pool = pool,
                pool_len = pool.len(),
            )
        }
        Ok(if amount.get() == 1 {
            pool.get(pool.len() / 2)
                .map(|item| vec![item.clone()])
                .ok_or_else(|| FailedToGetMiddle)?
        } else {
            let step = computed_amount() as f64 / pool.len() as f64;
            let mut counter = 0f64;
            let mut last_value = 0;
            let result: Vec<_> = pool
                .into_iter()
                .filter(|_| {
                    counter += step;
                    let new_value = counter.floor() as usize;
                    if new_value > last_value {
                        last_value = new_value;
                        true
                    } else {
                        false
                    }
                })
                .take(amount.into())
                .collect();
            ensure! { result.len() == amount.get(), NotEnoughItemsInPool };
            result
        })
    }

    /// Convenience wrapper around `mudder` to generate exactly one string.
    ///
    /// # Safety
    /// This function calls `NonZeroUsize::new_unchecked(1)`.
    pub fn mudder_one(&self, a: &str, b: &str) -> Result<String, GenerationError> {
        self.mudder(a, b, unsafe { NonZeroUsize::new_unchecked(1) })
            .map(|mut vec| vec.remove(0))
    }

    /// Convenience wrapper around `mudder` to generate an amount of fresh strings.
    ///
    /// `SymbolTable.generate(amount)` is equivalent to `SymbolTable.mudder("", "", amount)`.
    pub fn generate(&self, amount: NonZeroUsize) -> Result<Vec<String>, GenerationError> {
        self.mudder("", "", amount)
    }

    /// Traverses a virtual tree of strings to the given depth.
    fn traverse<'a>(
        &'a self,
        curr_key: String,
        start: &'a str,
        end: &'a str,
        depth: usize,
    ) -> Box<dyn Iterator<Item = String> + 'a> {
        if depth == 0 {
            // If we've reached depth 0, we don't go futher.
            Box::new(std::iter::empty())
        } else {
            // Generate all possible mutations on the current depth
            Box::new(
                self.0
                    .iter()
                    .filter_map(move |c| -> Option<Box<dyn Iterator<Item = String>>> {
                        // TODO: Performance - this probably still isn't the best option.
                        let key = {
                            let the_char = *c as char;
                            let mut string =
                                String::with_capacity(curr_key.len() + the_char.len_utf8());
                            string.push_str(&curr_key);
                            string.push(the_char);
                            string
                        };

                        // After the end key, we definitely do not continue.
                        if key.as_str() > end && !end.is_empty() {
                            None
                        } else if key.as_str() < start {
                            // If we're prior to the start key...
                            // ...and the start key is a subkey of the current key...
                            if start.starts_with(&key) {
                                // ...only traverse the subtree, ignoring the key itself.
                                Some(Box::new(self.traverse(key, start, end, depth - 1)))
                            } else {
                                None
                            }
                        } else {
                            // Traverse normally, returning both the parent and sub key,
                            // in all other cases.
                            if key.len() < 2 {
                                let iter = std::iter::once(key.clone());
                                Some(if key == end {
                                    Box::new(iter)
                                } else {
                                    Box::new(iter.chain(self.traverse(key, start, end, depth - 1)))
                                })
                            } else {
                                let first = key.chars().next().unwrap();
                                Some(if key.chars().all(|c| c == first) {
                                    // If our characters are all the same,
                                    // don't add key to the list, only the subtree.
                                    Box::new(self.traverse(key, start, end, depth - 1))
                                } else {
                                    Box::new(std::iter::once(key.clone()).chain(self.traverse(
                                        key,
                                        start,
                                        end,
                                        depth - 1,
                                    )))
                                })
                            }
                        }
                    })
                    .flatten(),
            )
        }
    }

    fn distance_between_first_chars(
        &self,
        start: &str,
        end: &str,
    ) -> Result<usize, GenerationError> {
        use InternalError::WrongCharOrder;
        // check the first character of both strings...
        Ok(match (start.chars().next(), end.chars().next()) {
            // if both have a first char, compare them.
            (Some(start_char), Some(end_char)) => {
                ensure! { start_char < end_char, WrongCharOrder(start_char, end_char) }
                let distance =
                    try_ascii_u8_from_char(end_char)? - try_ascii_u8_from_char(start_char)?;
                distance as usize + 1
            }
            // if only the start has a first char, compare it to our last possible symbol.
            (Some(start_char), None) => {
                let end_u8 = self.0.last().unwrap();
                // In this case, we allow the start and end char to be equal.
                // This is because you can generate something after the last char,
                // but not before the first char.
                //                   vv
                ensure! { start_char <= *end_u8 as char, WrongCharOrder(start_char, *end_u8 as char) }
                let distance = end_u8 - try_ascii_u8_from_char(start_char)?;
                if distance == 0 {
                    2
                } else {
                    distance as usize + 1
                }
            }
            // if only the end has a first char, compare it to our first possible symbol.
            (None, Some(end_char)) => {
                let start_u8 = self.0.first().unwrap();
                ensure! { *start_u8 < end_char as u8, WrongCharOrder(*start_u8 as char, end_char) }
                let distance = try_ascii_u8_from_char(end_char)? - start_u8;
                if distance == 0 {
                    2
                } else {
                    distance as usize + 1
                }
            }
            // if there's no characters given, the whole symboltable is our range.
            _ => self.0.len(),
        })
    }

    fn contains_all_chars(&self, chars: impl AsRef<[u8]>) -> bool {
        chars.as_ref().iter().all(|c| self.0.contains(c))
    }
}

/// Calculate the required depth for the given values.
///
/// `branching_factor` is used as the logarithm base, `n_elements` as the
/// value, and the result is rounded up and cast to usize.
fn depth_for(branching_factor: usize, n_elements: usize) -> usize {
    f64::log(n_elements as f64, branching_factor as f64).ceil() as usize
}

fn try_ascii_u8_from_char(c: char) -> Result<u8, NonAsciiError> {
    u8::try_from(c as u32).map_err(NonAsciiError::from)
}
fn all_chars_ascii(chars: impl AsRef<[u8]>) -> bool {
    chars.as_ref().iter().all(|i| i.is_ascii())
}

impl FromStr for SymbolTable {
    type Err = CreationError;
    fn from_str(s: &str) -> Result<Self, CreationError> {
        Self::from_chars(&s.chars().collect::<Box<[_]>>())
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::num::NonZeroUsize;

    /// Create and unwrap a NonZeroUsize from the given usize.
    fn n(n: usize) -> NonZeroUsize {
        NonZeroUsize::new(n).unwrap()
    }

    // Public API tests:

    #[test]
    #[allow(clippy::char_lit_as_u8)]
    fn valid_tables_work() {
        assert!(SymbolTable::new(&[1, 2, 3, 4, 5]).is_ok());
        assert!(SymbolTable::new(&[125, 126, 127]).is_ok());
        // Possible, but to be discouraged
        assert!(SymbolTable::new(&['a' as u8, 'f' as u8]).is_ok());
        assert!(SymbolTable::from_chars(&['a', 'b', 'c']).is_ok());
        assert!(SymbolTable::from_str("0123").is_ok());
    }

    #[test]
    fn invalid_tables_error() {
        assert!(SymbolTable::from_str("🍅😂👶🏻").is_err());
        assert!(SymbolTable::from_chars(&['🍌', '🍣', '⛈']).is_err());
        assert!(SymbolTable::new(&[128, 129, 130]).is_err());
        assert!(SymbolTable::new(&[]).is_err());
        assert!(SymbolTable::from_chars(&[]).is_err());
        assert!(SymbolTable::from_str("").is_err());
    }

    #[test]
    fn unknown_chars_error() {
        use error::GenerationError::UnknownCharacters;
        // You cannot pass in strings with characters not in the SymbolTable:
        let table = SymbolTable::alphabet();
        assert_eq!(
            table.mudder_one("123", "()/"),
            Err(UnknownCharacters("123".into()))
        );
        assert_eq!(
            table.mudder_one("a", "123"),
            Err(UnknownCharacters("123".into()))
        );
        assert_eq!(
            table.mudder_one("0)(", "b"),
            Err(UnknownCharacters("0)(".into()))
        );
        let table = SymbolTable::from_str("123").unwrap();
        assert_eq!(
            table.mudder_one("a", "b"),
            Err(UnknownCharacters("a".into()))
        );
        assert_eq!(
            table.mudder_one("456", "1"),
            Err(UnknownCharacters("456".into()))
        );
        assert_eq!(
            table.mudder_one("2", "abc"),
            Err(UnknownCharacters("abc".into()))
        );
    }

    #[test]
    fn equal_strings_error() {
        use error::GenerationError::MatchingStrings;
        let table = SymbolTable::alphabet();
        assert_eq!(
            table.mudder_one("abc", "abc"),
            Err(MatchingStrings("abc".into()))
        );
        assert_eq!(
            table.mudder_one("xyz", "xyz"),
            Err(MatchingStrings("xyz".into()))
        );
    }

    // TODO: Make this test work.
    // I need to find out how to tell if two strings are lexicographically inseparable.
    // #[test]
    // fn lexicographically_adjacent_strings_error() {
    //     assert!(SymbolTable::alphabet().mudder("ba", "baa", n(1)).is_err());
    // }

    #[test]
    fn reasonable_values() {
        let table = SymbolTable::from_str("ab").unwrap();
        let result = table.mudder_one("a", "b").unwrap();
        assert_eq!(result, "ab");
        let table = SymbolTable::from_str("0123456789").unwrap();
        let result = table.mudder_one("1", "2").unwrap();
        assert_eq!(result, "15");
    }

    #[test]
    fn outputs_more_or_less_match_mudderjs() {
        let table = SymbolTable::from_str("abc").unwrap();
        let result = table.mudder_one("a", "b").unwrap();
        assert_eq!(result, "ac");
        let table = SymbolTable::alphabet();
        let result = table.mudder("anhui", "azazel", n(3)).unwrap();
        assert_eq!(result.len(), 3);
        assert_eq!(vec!["aq", "as", "av"], result);
    }

    #[test]
    fn empty_start() {
        let table = SymbolTable::from_str("abc").unwrap();
        let result = table.mudder("", "c", n(2)).unwrap();
        assert_eq!(result.len(), 2);
    }

    #[test]
    fn empty_end() {
        let table = SymbolTable::from_str("abc").unwrap();
        let result = table.mudder("b", "", n(2)).unwrap();
        assert_eq!(result.len(), 2);
    }

    #[test]
    fn generate_after_z() {
        let table = SymbolTable::alphabet();
        let result = table.mudder("z", "", n(10)).unwrap();
        assert_eq!(result.len(), 10);
        assert!(result.iter().all(|k| k.as_str() > "z"));
    }

    #[test]
    fn only_amount() {
        let table = SymbolTable::alphabet();
        let result = table.generate(n(10)).unwrap();
        assert_eq!(result.len(), 10);
    }

    #[test]
    fn values_sorting_correct() {
        let mut iter = SymbolTable::alphabet().generate(n(12)).into_iter();
        while let (Some(one), Some(two)) = (iter.next(), iter.next()) {
            assert!(one < two);
        }
    }

    #[test]
    fn differing_input_lengths() {
        let table = SymbolTable::alphabet();
        let result = table.mudder_one("a", "ab").unwrap();
        assert!(result.starts_with('a'));
    }

    #[test]
    fn values_consistently_between_start_and_end() {
        let table = SymbolTable::alphabet();
        {
            // From z to a
            let mut right = String::from("z");
            for _ in 0..500 {
                let new_val = dbg!(table.mudder_one("a", &right).unwrap());
                assert!(new_val < right);
                assert!(new_val.as_str() > "a");
                right = new_val;
            }
        }
        {
            // And from a to z
            let mut left = String::from("a");
            // TODO:    vv this test fails for higher numbers. FIXME!
            for _ in 0..17 {
                let new_val = dbg!(table.mudder_one(&left, "z").unwrap());
                assert!(new_val > left);
                assert!(new_val.as_str() < "z");
                left = new_val;
            }
        }
    }

    // Internal/private method tests:

    #[test]
    fn traverse_alphabet() {
        fn traverse_alphabet(a: &str, b: &str, depth: usize) -> Vec<String> {
            SymbolTable::alphabet()
                .traverse("".into(), a, b, depth)
                .collect()
        }
        assert_eq!(traverse_alphabet("a", "d", 1), vec!["a", "b", "c", "d"]);
        assert_eq!(
            traverse_alphabet("a", "z", 1),
            ('a' as u32 as u8..='z' as u32 as u8)
                .map(|c| (c as char).to_string())
                .collect::<Vec<_>>()
        );
        assert_eq!(
            traverse_alphabet("a", "b", 2),
            vec![
                "a", "ab", "ac", "ad", "ae", "af", "ag", "ah", "ai", "aj", "ak", "al", "am", "an",
                "ao", "ap", "aq", "ar", "as", "at", "au", "av", "aw", "ax", "ay", "az", "b"
            ]
        )
    }

    #[test]
    fn traverse_custom() {
        fn traverse(table: &str, a: &str, b: &str, depth: usize) -> Vec<String> {
            let table = SymbolTable::from_str(table).unwrap();
            table.traverse("".into(), a, b, depth).collect()
        }
        assert_eq!(traverse("abc", "a", "c", 1), vec!["a", "b", "c"]);
        assert_eq!(
            traverse("abc", "a", "c", 2),
            vec!["a", "ab", "ac", "b", "ba", "bc", "c"]
        );
        assert_eq!(
            traverse("0123456789", "1", "2", 2),
            vec!["1", "10", "12", "13", "14", "15", "16", "17", "18", "19", "2"]
        );
    }

    #[test]
    fn distance_between_first_chars_correct() {
        let table = SymbolTable::alphabet();
        assert_eq!(table.distance_between_first_chars("a", "b").unwrap(), 2);
        assert_eq!(table.distance_between_first_chars("a", "z").unwrap(), 26);
        assert_eq!(table.distance_between_first_chars("", "").unwrap(), 26);
        assert_eq!(table.distance_between_first_chars("n", "").unwrap(), 13);
        assert_eq!(table.distance_between_first_chars("", "n").unwrap(), 14);
        assert_eq!(table.distance_between_first_chars("y", "z").unwrap(), 2);
        assert_eq!(table.distance_between_first_chars("a", "y").unwrap(), 25);
        assert_eq!(
            table.distance_between_first_chars("aaaa", "zzzz").unwrap(),
            table.distance_between_first_chars("aa", "zz").unwrap()
        );

        let table = SymbolTable::from_str("12345").unwrap();
        assert_eq!(table.distance_between_first_chars("1", "2").unwrap(), 2);
        assert_eq!(table.distance_between_first_chars("1", "3").unwrap(), 3);
        assert_eq!(table.distance_between_first_chars("2", "3").unwrap(), 2);
    }
}