1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
use crate::Matrix;

use num_traits::Num;

impl<T: Num + Clone + Copy> Matrix<T> {
    /// Transposes the matrix, via mutating the original data.
    /// Does not return a new struct, instead modifies the old one.
    /// ```
    /// #[macro_use] extern crate mtrs;
    ///
    /// let mut matrix = matrix![(2, 2); 1, 2; 3, 4];
    /// matrix.transpose();
    /// assert_eq!(matrix, matrix![(2, 2); 1, 3; 2, 4]);
    /// ```
    pub fn transpose(&mut self) {
        let v = self.as_vec();
        let mut transposed = vec![Vec::with_capacity(v.len()); v[0].len()];

        for i in 0..v[0].len() {
            for row in &v {
                transposed[i].push(row[i]);
            }
        }

        self.data = transposed
            .iter()
            .flat_map(|row| row.iter().copied())
            .collect();
        self.height = transposed[0].len();
        self.width = transposed.len();
    }

    /// Add a scalar constant to the matrix
    /// ```
    /// #[macro_use] extern crate mtrs;
    /// use mtrs::Matrix;
    ///
    /// let m1 = Matrix::identity(2);
    ///
    /// assert_eq!(m1.scalar_add(2), matrix![(2, 2); 3, 2; 2, 3]);
    /// ```
    pub fn scalar_add(&self, value: T) -> Self {
        Self::from_vec(self.size(), self.data.iter().map(|x| *x + value).collect())
    }

    /// Subtract a scalar constant from the matrix
    /// ```
    /// #[macro_use] extern crate mtrs;
    /// use mtrs::Matrix;
    ///
    /// let m1 = Matrix::identity(2);
    ///
    /// assert_eq!(m1.scalar_sub(2), matrix![(2, 2); -1, -2; -2, -1]);
    /// ```
    pub fn scalar_sub(&self, value: T) -> Self {
        Self::from_vec(self.size(), self.data.iter().map(|x| *x - value).collect())
    }

    /// Multiply a scalar constant with the matrix
    /// ```
    /// #[macro_use] extern crate mtrs;
    /// use mtrs::Matrix;
    ///
    /// let m1 = Matrix::identity(2);
    ///
    /// assert_eq!(m1.scalar_mul(3), matrix![(2, 2); 3, 0; 0, 3]);
    /// ```
    pub fn scalar_mul(&self, value: T) -> Self {
        Self::from_vec(self.size(), self.data.iter().map(|x| *x * value).collect())
    }

    /// Divide each entry in the matrix by a scalar constant
    /// ```
    /// #[macro_use] extern crate mtrs;
    /// use mtrs::Matrix;
    ///
    /// let m1 = matrix![(2, 2); 4, 6; 8, 10];
    ///
    /// assert_eq!(m1.scalar_div(2), matrix![(2, 2); 2, 3; 4, 5]);
    /// ```
    pub fn scalar_div(&self, value: T) -> Self {
        Self::from_vec(self.size(), self.data.iter().map(|x| *x / value).collect())
    }

    /// Calculate the determinant of the `Matrix` (if the `Matrix` is square)
    /// ```
    /// #[macro_use] extern crate mtrs;
    ///
    /// let matrix = matrix![(4, 4); 1, 0, 2, -1; 3, 0, 0, 5; 2, 1, 4, -3; 1, 0, 5, 0];
    ///
    /// assert_eq!(matrix.determinant(), Some(30));
    /// ```
    /// # Failure
    /// Fails if the matrix is not square
    pub fn determinant(&self) -> Option<T> {
        if self.height != self.width {
            return None;
        }

        let mut det = T::one();
        let mut total = T::one();

        let mut temp = vec![T::zero(); self.height + 1];
        let mut mat = self.data.clone();

        for i in 0..self.height {
            let mut index = i;

            while index < self.width && mat[index * self.width + i] == T::zero() {
                index += 1;
            }

            if index == self.height {
                continue;
            }

            if index != i {
                for j in 0..self.height {
                    mat.swap(index * self.width + j, i * self.width + j);
                }

                if (index - i) % 2 != 0 {
                    // Negate det
                    det = T::zero() - det;
                }
            }

            for j in 0..self.height {
                temp[j] = mat[i * self.width + j];
            }

            for j in (i + 1)..self.height {
                let diag = temp[i];
                let row = mat[j * self.width + i];

                for k in 0..self.height {
                    mat[j * self.width + k] = (diag * mat[j * self.width + k]) - (row * temp[k]);
                }

                total = total * diag;
            }
        }

        for i in 0..self.height {
            det = det * mat[i * self.width + i];
        }

        Some(det / total)
    }

    /// Calculate the inverse of `Matrix<T>`, via multiplying the reciprocal of the `determinant`
    /// ```
    /// #[macro_use] extern crate mtrs;
    ///
    /// let matrix = matrix![f32; (2, 2); -1, 1.5; 1, -1];
    ///
    /// assert_eq!(matrix.inverse().expect("Could not take inverse"), matrix![f32; (2, 2); 2, -3; -2, 2]);
    /// ```
    /// # Failure
    /// Fails if the matrix is not invertible (that is, it is not square __or__ the determinant is `0`)
    pub fn inverse(&self) -> Option<Self> {
        if self.height != self.width {
            return None;
        }
        // The bounds are checked, so this is guaranteed to be Some(T)
        let det = self.determinant().unwrap();
        if det.is_zero() {
            return None;
        }

        Some(self.scalar_div(det))
    }
}