1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
//! Mpu6050 sensor driver.
//!
//! Register sheet [here](https://www.invensense.com/wp-content/uploads/2015/02/MPU-6000-Register-Map1.pdf),
//! Data sheet [here](https://www.invensense.com/wp-content/uploads/2015/02/MPU-6500-Datasheet2.pdf)
//! 
//! To use this driver you must provide a concrete `embedded_hal` implementation.//! This example uses `linux_embedded_hal`
//! ```
//! let i2c = I2cdev::new("/dev/i2c-1")
//!     .map_err(Mpu6050Error::I2c)?;
//!
//! let delay = Delay;
//!
//! let mut mpu = Mpu6050::new(i2c, delay);
//! mpu.init()?;
//! mpu.soft_calib(Steps(100))?;
//! mpu.calc_variance(Steps(50))?;
//!
//! println!("Calibrated with bias: {:?}", mpu.get_bias().unwrap());
//! println!("Calculated variance: {:?}", mpu.get_variance().unwrap());
//!
//! // get roll and pitch estimate
//! let acc = mpu.get_acc_angles()?;
//!
//! // get roll and pitch estimate - averaged accross n readings (steps)
//! let acc = mpu.get_acc_angles_avg(Steps(5))?;
//!
//! // get temp
//! let temp = mpu.get_temp()?;
//!
//! // get temp - averages across n readings (steps)
//! let temp = mpu.get_temp_avg(Steps(5))?;
//!
//! // get gyro data, scaled with sensitivity 
//! let gyro = mpu.get_gyro()?;
//! 
//! // get gyro data, scaled with sensitivity - averaged across n readings (steps) 
//! let gyro = mpu.get_gyro_avg(Steps(5))?;
//! 
//! // get accelerometer data, scaled with sensitivity
//! let acc = mpu.get_acc()?;
//! 
//! // get accelerometer data, scaled with sensitivity - averages across n readings (steps)
//! let acc = mpu.get_acc_avg(Steps(5))?;
//! ```

#![no_std]

pub mod registers;

use crate::registers::Registers::*;
use libm::{powf, atan2f, sqrtf};
use nalgebra::{Vector3, Vector2};
use embedded_hal::{
    blocking::delay::DelayMs,
    blocking::i2c::{Write, WriteRead},
};

/// pi, taken straight from C
pub const PI: f32 = 3.14159265358979323846;
/// Gyro Sensitivity
pub const FS_SEL: (f32, f32, f32, f32) = (131., 65.5, 32.8, 16.4);
/// Calcelerometer Sensitivity
pub const AFS_SEL: (f32, f32, f32, f32) = (16384., 8192., 4096., 2048.);


/// Operations trait for sensor readings
pub trait MutOps {
    /// Add values to each readings fields
    fn add(&mut self, operand: &Self);
    /// Scales object fields with foo * 1/n
    fn scale(&mut self, n: u8);
}

/// Helpers for sensor readings
pub trait Access<T> {
    fn x(&self) -> T;
    fn set_x(&mut self, val: T);
    fn y(&self) -> T;
    fn set_y(&mut self, val: T);
    fn z(&self) -> T;
    fn set_z(&mut self, val: T);
}

/// Trait for conversion from/to radians/degree
pub trait UnitConv<T> {
    /// get radians from degree
    fn to_rad(&self) -> T;
    /// get radians from degree and change underlying data
    fn to_rad_mut(&mut self);
    /// get degree from radians
    fn to_deg(&self) -> T;
    /// get degree from radians and change underlying data
    fn to_deg_mut(&mut self);
}

impl UnitConv<f32> for f32 {
    fn to_rad(&self) -> f32 {
        self * PI/180.0
    } 
    
    fn to_rad_mut(&mut self) {
        *self *= PI/180.0
    }

    fn to_deg(&self) -> f32 {
        self * 180.0/PI
    }   

    fn to_deg_mut(&mut self) {
        *self *= 180.0/PI
    }   
}

impl Access<f32> for Vector3<f32> {
    fn x(&self) -> f32 {
        self[0]
    }

    fn set_x(&mut self, val: f32) {
        self[0] = val;
    }

    fn y(&self) -> f32 {
        self[1]
    }

    fn set_y(&mut self, val: f32) {
        self[1] = val;
    }

    fn z(&self) -> f32 {
        self[2]
    }

    fn set_z(&mut self, val: f32) {
        self[2] = val
    }
}

impl Access<f32> for Vector2<f32> {
    fn x(&self) -> f32 {
        self[0]
    }

    fn set_x(&mut self, val: f32) {
        self[0] = val;
    }

    fn y(&self) -> f32 {
        self[1]
    }

    fn set_y(&mut self, val: f32) {
        self[1] = val;
    }

    fn z(&self) -> f32 { 
        -1.0
    }

    fn set_z(&mut self, _val: f32) {}
}

/// Used for bias calculation of chip in mpu::soft_calib
#[derive(Debug, Clone)]
pub struct Bias {
    /// accelerometer axis bias
    acc: Vector3<f32>,
    /// gyro x axis bias
    gyro: Vector3<f32>,
    /// temperature AVERAGE: can't get bias!
    temp: f32,
}

impl Default for Bias {
    fn default() -> Bias {
        Bias {
            acc: Vector3::<f32>::zeros(),
            gyro: Vector3::<f32>::zeros(),
            temp: 0.0,
        }
    }
}

impl Bias {
    fn add(&mut self, acc: Vector3<f32>, gyro: Vector3<f32>, temp: f32) {
        self.acc += acc;
        self.gyro += gyro;
        self.temp += temp; 
    }

    fn scale(&mut self, n: u8) {
        let n = n as f32;
        self.acc /= n;
        self.gyro /= n;
        self.temp /= n;
    }
}

/// Reuse Bias struct for Variance calculation
pub type Variance = Bias;

impl Variance {
    fn add_diff(&mut self, acc_diff: Vector3<f32>, gyro_diff: Vector3<f32>, temp_diff: f32) {
        self.acc += acc_diff;
        self.gyro += gyro_diff;
        self.temp += temp_diff; 
    }
}

/// Vector2 for Roll/Pitch Reading
impl UnitConv<Vector2<f32>> for Vector2<f32> {
    fn to_rad(&self) -> Vector2<f32> {
        Vector2::<f32>::new(
            self.x().to_rad(),
            self.y().to_rad(),
        )
    }

    fn to_rad_mut(&mut self) {
        self[0].to_rad_mut();
        self[1].to_rad_mut();
    }

    fn to_deg(&self) -> Vector2<f32> {
        Vector2::<f32>::new(
            self.x().to_deg(),
            self.y().to_deg(),
        )
    }

    fn to_deg_mut(&mut self) {
        self[0].to_deg_mut();
        self[1].to_deg_mut();
    }
}

/// Helper struct used as number of steps for filtering
pub struct Steps(pub u8);

// Helper struct to convert Sensor measurement range to appropriate values defined in datasheet
struct Sensitivity(f32);

// Converts accelerometer range to correction/scaling factor, see table p. 29 or register sheet
impl From<AccelRange> for Sensitivity {
    fn from(range: AccelRange) -> Sensitivity {
        match range {
            AccelRange::G2 => return Sensitivity(AFS_SEL.0),
            AccelRange::G4 => return Sensitivity(AFS_SEL.1),
            AccelRange::G8 => return Sensitivity(AFS_SEL.2),
            AccelRange::G16 => return Sensitivity(AFS_SEL.3),
        }
    }
}

// Converts gyro range to correction/scaling factor, see table p. 31 or register sheet
impl From<GyroRange> for Sensitivity {
    fn from(range: GyroRange) -> Sensitivity {
        match range {
            GyroRange::DEG250 => return Sensitivity(FS_SEL.0),
            GyroRange::DEG500 => return Sensitivity(FS_SEL.1),
            GyroRange::DEG1000 => return Sensitivity(FS_SEL.2),
            GyroRange::DEG2000 => return Sensitivity(FS_SEL.3),
        }
    }
}

/// Defines accelerometer range/sensivity
pub enum AccelRange {
    G2,
    G4,
    G8,
    G16,
}

/// Defines gyro range/sensitivity
pub enum GyroRange {
    DEG250,
    DEG500,
    DEG1000,
    DEG2000,
}

/// All possible errors in this crate
#[derive(Debug)]
pub enum Mpu6050Error<E> {
    /// I2C bus error
    I2c(E),

    /// Invalid chip ID was read
    InvalidChipId(u8),
}

/// Handles all operations on/with Mpu6050
pub struct Mpu6050<I, D> {
    i2c: I,
    delay: D,
    bias: Option<Bias>,
    variance: Option<Variance>,
    acc_sensitivity: f32,
    gyro_sensitivity: f32,
}

impl<I, D, E> Mpu6050<I, D>
where
    I: Write<Error = E> + WriteRead<Error = E>,
    D: DelayMs<u8>, 
{
    /// Side effect free constructor with default sensitivies, no calibration
    pub fn new(i2c: I, delay: D) -> Self {
        Mpu6050 {
            i2c,
            delay,
            bias: None,
            variance: None,
            acc_sensitivity: AFS_SEL.0,
            gyro_sensitivity: FS_SEL.0, 
        }
    }

    /// custom sensitivity
    pub fn new_with_sens(i2c: I, delay: D, arange: AccelRange, grange: GyroRange) -> Self {
        Mpu6050 {
            i2c,
            delay,
            bias: None,
            variance: None,
            acc_sensitivity: Sensitivity::from(arange).0,
            gyro_sensitivity: Sensitivity::from(grange).0,
        }
    }

    /// Wakes MPU6050 with all sensors enabled (default)
    pub fn wake(&mut self) -> Result<(), Mpu6050Error<E>> {
        self.write_u8(POWER_MGMT_1.addr(), 0)?;
        self.delay.delay_ms(100u8);
        Ok(())
    }

    /// Init wakes MPU6050 and verifies register addr, e.g. in i2c
    pub fn init(&mut self) -> Result<(), Mpu6050Error<E>> {
        self.wake()?;
        self.verify()?;
        Ok(())
    }

    /// Verifies device to address 0x68 with WHOAMI.addr() Register
    pub fn verify(&mut self) -> Result<(), Mpu6050Error<E>> {
        let address = self.read_u8(WHOAMI.addr())?;
        if address != SLAVE_ADDR.addr() {
            return Err(Mpu6050Error::InvalidChipId(address));
        }
        Ok(())
    }

    /// Performs software calibration with steps number of readings
    /// of accelerometer and gyrometer sensor
    /// Readings must be made with MPU6050 in resting position
    pub fn soft_calib(&mut self, steps: Steps) -> Result<(), Mpu6050Error<E>> {
        let mut bias = Bias::default();

        for _ in 0..steps.0+1 {
            bias.add(self.get_acc()?, self.get_gyro()?, self.get_temp()?);
        }   

        bias.scale(steps.0);
        bias.acc[2] -= 1.0; // gravity compensation
        self.bias = Some(bias);

        Ok(())
    }
    
    /// Get bias of measurements
    pub fn get_bias(&mut self) -> Option<&Bias> {
        self.bias.as_ref()
    }

    /// Get variance of sensor by observing in resting state for steps 
    /// number of readings: accelerometer, gyro and temperature sensor each
    pub fn calc_variance(&mut self, steps: Steps) -> Result<(), Mpu6050Error<E>> {
        let iterations = steps.0;
        if let None = self.bias {
            self.soft_calib(steps)?;
        }
        
        let mut variance = Variance::default();
        let mut acc = self.get_acc()?;
        let mut gyro = self.get_gyro()?;
        let mut temp = self.get_temp()?;
        let mut acc_diff = Vector3::<f32>::zeros(); 
        let mut gyro_diff = Vector3::<f32>::zeros();
        let mut temp_diff: f32;
        let bias = self.bias.clone().unwrap();

        for _ in 0..iterations {
           acc_diff.set_x(powf(acc.x() - bias.acc.x(), 2.0));
           acc_diff.set_y(powf(acc.y() - bias.acc.y(), 2.0));
           acc_diff.set_z(powf(acc.z() - bias.acc.z(), 2.0)); 
           gyro_diff.set_x(powf(gyro.x() - bias.gyro.x(), 2.0));
           gyro_diff.set_y(powf(gyro.y() - bias.gyro.y(), 2.0));
           gyro_diff.set_z(powf(gyro.z() - bias.gyro.z(), 2.0));
           temp_diff = powf(temp - bias.temp, 2.0);
           variance.add_diff(acc_diff, gyro_diff, temp_diff);
           acc = self.get_acc()?;
           gyro = self.get_gyro()?;
           temp = self.get_temp()?;
        }

        variance.scale(iterations-1);
        variance.acc[2] -= 1.0; // gravity compensation
        self.variance = Some(variance);

        Ok(())
    }

    /// get variance of measurements
    pub fn get_variance(&mut self) -> Option<&Variance> {
        self.variance.as_ref()
    }

    /// Roll and pitch estimation from raw accelerometer readings
    /// NOTE: no yaw! no magnetometer present on MPU6050
    pub fn get_acc_angles(&mut self) -> Result<Vector2<f32>, Mpu6050Error<E>> {
        let acc = self.get_acc()?;
        Ok(Vector2::<f32>::new(
            atan2f(acc.y(), sqrtf(powf(acc.x(), 2.) + powf(acc.z(), 2.))),
            atan2f(-acc.x(), sqrtf(powf(acc.y(), 2.) + powf(acc.z(), 2.)))
        ))
    }

    /// Roll and pitch estimation from raw accelerometer - averaged across window readings
    pub fn get_acc_angles_avg(&mut self, steps: Steps) -> Result<Vector2<f32>, Mpu6050Error<E>> {
        let mut acc = self.get_acc_angles()?;
        for _ in 0..steps.0-1 {
            acc += self.get_acc_angles()?;
        }
        acc /= steps.0 as f32;
        Ok(acc)
    }

    /// Converts 2 bytes number in 2 compliment
    /// TODO i16?! whats 0x8000?!
    fn read_word_2c(&self, byte: &[u8]) -> i32 {
        let high: i32 = byte[0] as i32;
        let low: i32 = byte[1] as i32;
        let mut word: i32 = (high << 8) + low;

        if word >= 0x8000 {
            word = -((65535 - word) + 1);
        }

        word
    }

    /// Reads rotation (gyro/acc) from specified register
    fn read_rot(&mut self, reg: u8) -> Result<Vector3<f32>, Mpu6050Error<E>> {
        let mut buf: [u8; 6] = [0; 6];
        self.read_bytes(reg, &mut buf)?;

        Ok(Vector3::<f32>::new(
            self.read_word_2c(&buf[0..2]) as f32,
            self.read_word_2c(&buf[2..4]) as f32,
            self.read_word_2c(&buf[4..6]) as f32
        ))
    }

    /// Accelerometer readings in m/s^2
    pub fn get_acc(&mut self) -> Result<Vector3<f32>, Mpu6050Error<E>> {
        let mut acc = self.read_rot(ACC_REGX_H.addr())?;
        
        acc /= self.acc_sensitivity;

        if let Some(ref bias) = self.bias { 
            acc -= bias.acc;
        }

        Ok(acc)
    }

    /// Accelerometer readings in m/s^2 - averaged
    pub fn get_acc_avg(&mut self, steps: Steps) -> Result<Vector3<f32>, Mpu6050Error<E>> {
        let mut acc = self.get_acc()?;
        for _ in 0..steps.0-1 {
            acc += self.get_acc()?;
        }
        acc /= steps.0 as f32;
        Ok(acc)
    }

    /// Gyro readings in rad/s
    pub fn get_gyro(&mut self) -> Result<Vector3<f32>, Mpu6050Error<E>> {
        let mut gyro = self.read_rot(GYRO_REGX_H.addr())?;

        gyro *= PI / (180.0 * self.gyro_sensitivity);

        if let Some(ref bias) = self.bias {
            gyro -= bias.gyro;
        }

        Ok(gyro)
    }
    
    /// Gyro readings in rad/s
    pub fn get_gyro_avg(&mut self, steps: Steps) -> Result<Vector3<f32>, Mpu6050Error<E>> {
        let mut gyro = self.get_gyro()?;
        for _ in 0..steps.0-1 {
            gyro += self.get_gyro()?;
        }

        gyro /= steps.0 as f32;
        Ok(gyro)
    }

    /// Temp in degrees celcius
    pub fn get_temp(&mut self) -> Result<f32, Mpu6050Error<E>> {
        let mut buf: [u8; 2] = [0; 2];
        self.read_bytes(TEMP_OUT_H.addr(), &mut buf)?;
        let raw_temp = self.read_word_2c(&buf[0..2]) as f32;

        Ok((raw_temp / 340.) + 36.53)
    } 
    
    pub fn get_temp_avg(&mut self, steps: Steps) -> Result<f32, Mpu6050Error<E>> {
        let mut temp = self.get_temp()?;
        for _ in 0..steps.0-1 {
            temp += self.get_temp()?;
        }
        temp /= steps.0 as f32;
        Ok(temp)
    }

    /// Writes byte to register
    pub fn write_u8(&mut self, reg: u8, byte: u8) -> Result<(), Mpu6050Error<E>> {
        self.i2c.write(SLAVE_ADDR.addr(), &[reg, byte])
            .map_err(Mpu6050Error::I2c)?;
        self.delay.delay_ms(10u8);
        Ok(())
    }
    
    /// Reads byte from register
    pub fn read_u8(&mut self, reg: u8) -> Result<u8, Mpu6050Error<E>> {
        let mut byte: [u8; 1] = [0; 1];
        self.i2c.write_read(SLAVE_ADDR.addr(), &[reg], &mut byte)
            .map_err(Mpu6050Error::I2c)?;
        Ok(byte[0])
    }

    /// Reads series of bytes into buf from specified reg
    pub fn read_bytes(&mut self, reg: u8, buf: &mut [u8]) -> Result<(), Mpu6050Error<E>> {
        self.i2c.write_read(SLAVE_ADDR.addr(), &[reg], buf)
            .map_err(Mpu6050Error::I2c)?;
        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_unit_conv() {
        assert_eq!(1.0.to_rad(), 0.01745329252);

        let mut deg = 1.0;
        deg.to_rad_mut();
        assert_eq!(deg, 0.01745329252);

        assert_eq!(1.0.to_deg(), 57.295776);

        let mut rad = 1.0;
        rad.to_deg_mut();
        assert_eq!(rad, 57.295776);
    }

    #[test]
    fn test_nalgebra() {
        let mut v = Vector3::<f32>::new(1., 1., 1.);
        let o = v.clone();
        v *= 3.;
        assert_eq!(Vector3::<f32>::new(3., 3., 3.), v);
        v /= 3.;
        assert_eq!(o, v);
        v -= o;
        assert_eq!(Vector3::<f32>::new(0., 0., 0.), v);
    }
}