1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
// SPDX-License-Identifier: MPL-2.0

//! Functions to compute warped images with an MLS algorithm.
//! Two warping functions are provided:
//!  - a dense warp where the deformation is computed for each pixel,
//!  - a sparse warp where its only computed on a sparse grid,
//!    and the other pixels locations are interpolated.

#![warn(missing_docs)]

use image::{Rgb, RgbImage};

mod interpolation;

// Dense interpolation #########################################################

/// Compute the warped image with an MLS algorithm.
/// The last argument is the MLS version you choose.
///
/// The new image is back projected as if the source and destination
/// control points were reversed.
///
/// The warp is computed densely, for every pixel.
///
/// Pixels interpolation is done with bilinear interpolation.
#[allow(clippy::type_complexity)]
pub fn reverse_dense(
    img_src: &RgbImage,
    controls_src: &[(f32, f32)],
    controls_dst: &[(f32, f32)],
    deform_function: fn(&[(f32, f32)], &[(f32, f32)], (f32, f32)) -> (f32, f32),
) -> RgbImage {
    let (width, height) = img_src.dimensions();
    let color_outside = Rgb([0, 0, 0]);
    RgbImage::from_fn(width, height, |x, y| {
        let (x2, y2) = deform_function(controls_dst, controls_src, (x as f32, y as f32));
        // nearest_neighbor(img_src, x2, y2).unwrap_or(color_outside)
        interpolation::bilinear(img_src, x2, y2).unwrap_or(color_outside)
    })
}

// Sparse interpolation ########################################################

/// Compute the warped image with an MLS algorithm.
/// The last argument is the MLS version you choose.
///
/// The new image is back projected as if the source and destination
/// control points were reversed.
///
/// Only a sparse grid subset of the pixels are reprojected with the actual MLS function.
/// The other pixels locations are interpolated bilinearly.
/// For example, a subresolution factor of 3 means that only 1 in 3 pixels
/// per row and per column is actually projected with MLS.
/// In the case of a big number of control points (> 100),
/// this can produce a significant speedup (roughly 16x for a subresolution factor of 4),
/// with a minimal impact on the produced image.
///
/// Pixels interpolation is done with bilinear interpolation.
#[allow(clippy::type_complexity)]
pub fn reverse_sparse(
    img_src: &RgbImage,
    controls_src: &[(f32, f32)],
    controls_dst: &[(f32, f32)],
    subresolution_factor: u32,
    deform_function: fn(&[(f32, f32)], &[(f32, f32)], (f32, f32)) -> (f32, f32),
) -> RgbImage {
    let (width, height) = img_src.dimensions();
    let color_outside = Rgb([0, 0, 0]);

    // size of the subresolution matrix for which we actually compute the MLS reprojections
    let sub_width = (width - 1) / subresolution_factor + 2;
    let sub_height = (height - 1) / subresolution_factor + 2;

    // the anchors are the MLS reprojection of the subresolution matrix of points
    let anchors: Vec<Vec<(f32, f32)>> = (0..sub_height)
        .map(|v| {
            let y = (v * subresolution_factor) as f32;
            (0..sub_width)
                .map(|u| {
                    let x = (u * subresolution_factor) as f32;
                    deform_function(controls_dst, controls_src, (x, y))
                })
                .collect()
        })
        .collect();

    // apply bilinear warp to compute the full warp
    RgbImage::from_fn(width, height, |x, y| {
        let sub_left = x / subresolution_factor;
        let sub_top = y / subresolution_factor;
        let top_left_corner = (
            subresolution_factor * sub_left,
            subresolution_factor * sub_top,
        );
        let bot_right_corner = (
            top_left_corner.0 + subresolution_factor,
            top_left_corner.1 + subresolution_factor,
        );
        let sub_left = sub_left as usize;
        let sub_top = sub_top as usize;
        // TODO: should try to avoid retrieving bloc corners for each pixel
        let corners_dst = [
            anchors[sub_top][sub_left],
            anchors[sub_top][sub_left + 1],
            anchors[sub_top + 1][sub_left],
            anchors[sub_top + 1][sub_left + 1],
        ];
        let (x2, y2) = bilinear_warp(top_left_corner, bot_right_corner, corners_dst, (x, y));
        interpolation::bilinear(img_src, x2, y2).unwrap_or(color_outside)
    })
}

/// Perform bilinear warping of the pixel.
/// WARNING: make sure it is within the bloc corners.
fn bilinear_warp(
    top_left_corner: (u32, u32),
    bot_right_corner: (u32, u32),
    corners_dst: [(f32, f32); 4],
    src_pos: (u32, u32),
) -> (f32, f32) {
    let (u, v) = src_pos;
    let (left, top) = top_left_corner;
    let (right, bottom) = bot_right_corner;
    let [dst_tl, dst_tr, dst_bl, dst_br] = corners_dst;

    // compute bilinear coefficients
    let coef_left = right - u;
    let coef_right = u - left;
    let coef_top = bottom - v;
    let coef_bot = v - top;

    let coef_tl = (coef_top * coef_left) as f32;
    let coef_tr = (coef_top * coef_right) as f32;
    let coef_bl = (coef_bot * coef_left) as f32;
    let coef_br = (coef_bot * coef_right) as f32;

    // perform bilinear reprojection
    let area = ((right - left) * (bottom - top)) as f32;
    let x =
        ((coef_tl * dst_tl.0) + (coef_tr * dst_tr.0) + (coef_bl * dst_bl.0) + (coef_br * dst_br.0))
            / area;
    let y =
        ((coef_tl * dst_tl.1) + (coef_tr * dst_tr.1) + (coef_bl * dst_bl.1) + (coef_br * dst_br.1))
            / area;

    (x, y)
}