1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
//!
//! Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved.
//!
//! File : logistic.rs
//!
//! Purpose: Implements logistic regression with regulatization.
//!
//!          Demonstrates using the exponential cone and log-sum-exp in Optimizer API.
//!
//!          Plots an example for 2D datasets.

extern crate mosek;
extern crate itertools;

use mosek::{Task,TaskCB,Boundkey,Objsense,Soltype,Streamtype};
use itertools::{izip,iproduct};

const INF : f64 = 0.0;

#[allow(non_snake_case)]
fn softplus(task : & mut TaskCB, d : i32, n : i32, theta : i32, t : i32, X : &[f64], Y : &[bool]) -> Result<(),String> {
    let nvar = task.get_num_var()?;
    let ncon = task.get_num_con()?;
    let nafe = task.get_num_afe()?;
    task.append_vars(2*n)?;   // z1, z2
    task.append_cons(n)?;     // z1 + z2 = 1
    task.append_afes(4*n as i64)?;   //theta * X[i] - t[i], -t[i], z1[i], z2[i]
    let z1 = nvar;
    let z2 = nvar+n;
    let zcon = ncon;
    let thetaafe = nafe;
    let tafe = nafe+n   as i64;
    let z1afe = tafe+n  as i64;
    let z2afe = z1afe+n as i64;

    // Linear constraints
    {
        let mut subi = vec![0i32; 2*n as usize];
        let mut subj = vec![0i32; 2*n as usize];
        let mut aval = vec![0.0;  2*n as usize];

        for i in 0..n {
            task.put_var_name(z1+i,format!("z1[{}]",i).as_str())?;
            task.put_var_name(z2+i,format!("z2[{}]",i).as_str())?;
        }
        for ((i,&zx),si, sj, av) in izip!(iproduct!(0..n,&[z1,z2]),
                                          subi.iter_mut(),
                                          subj.iter_mut(),
                                          aval.iter_mut()) {
            *si = zcon+i;
            *sj = zx+i as i32;
            *av = 1.0;
        }

        task.put_aij_list(subi.as_slice(), subj.as_slice(), aval.as_slice())?;
        task.put_con_bound_slice_const(zcon, zcon+n, Boundkey::FX, 1.0, 1.0)?;
        task.put_var_bound_slice_const(nvar, nvar+2*n, Boundkey::FR, -INF, INF)?;
    }
    // Affine conic expressions
    let mut afeidx = vec![0i64; (d*n+4*n) as usize];
    let mut varidx = vec![0i32; (d*n+4*n) as usize];
    let mut fval   = vec![0.0;  (d*n+4*n) as usize];

    // Thetas
    let mut k : usize = 0;
    for ((i,j),afei,vari) in izip!(iproduct!(0..n,0..d),
                                   & mut afeidx[k..k+(n*d) as usize],
                                   & mut varidx[k..k+(n*d) as usize]) {
        *afei = thetaafe + i as i64;
        *vari = theta    + j;
    }

    for ((&yi,_j),&xij,fv) in izip!(iproduct!(Y,0..d), X, & mut fval[k..k+(n*d) as usize]) {
        *fv = (if yi {-1.0} else {1.0}) * xij;
    }
    k += (n*d) as usize;

    for fv in fval[k..k+(2*n) as usize].iter_mut() { *fv = -1.0; }
    for (i,afei,vari) in izip!(0..n,
                               &mut afeidx[k..k+(2*n) as usize].iter_mut().step_by(2),
                               &mut varidx[k..k+(2*n) as usize].iter_mut().step_by(2)) {
        *afei = thetaafe+i as i64; *vari = t+i;
    }
    for (i,afei,vari) in izip!(0..n,
                               &mut afeidx[k+1..k+(2*n) as usize].iter_mut().step_by(2),
                               &mut varidx[k+1..k+(2*n) as usize].iter_mut().step_by(2)) {
        *afei = tafe+i as i64; *vari = t+i;
    }
    k += (n*2) as usize;

    for fv in fval[k..k+(2*n) as usize].iter_mut() { *fv = 1.0; }
    for (i,afei,vari) in izip!(0..n,
                               &mut afeidx[k..k+(2*n) as usize].iter_mut().step_by(2),
                               &mut varidx[k..k+(2*n) as usize].iter_mut().step_by(2)) {
        *afei = z1afe+i as i64; *vari = z1+i;
    }
    for (i,afei,vari) in izip!(0..n,
                               &mut afeidx[k+1..k+(2*n) as usize].iter_mut().step_by(2),
                               &mut varidx[k+1..k+(2*n) as usize].iter_mut().step_by(2)) {
        *afei = z2afe+i as i64; *vari = z2+i;
    }


    // Add the expressions
    task.put_afe_f_entry_list(afeidx.as_slice(), varidx.as_slice(), fval.as_slice())?;

    {
        // Add a single row with the constant expression "1.0"
        let oneafe = task.get_num_afe()?;
        task.append_afes(1)?;
        task.put_afe_g(oneafe, 1.0)?;

        // Add an exponential cone domain
        let dom = task.append_primal_exp_cone_domain()?;

        // Conic constraints
        let zeros = &[0.0,0.0,0.0];
        let mut acci = task.get_num_acc()?;
        for i in 0..n as i64 {
            task.append_acc(dom, &[z1afe+i, oneafe, thetaafe+i], zeros)?;
            task.append_acc(dom, &[z2afe+i, oneafe, tafe+i],     zeros)?;
            task.put_acc_name(acci,format!("z1:theta[{}]",i).as_str())?;
            task.put_acc_name(acci+1,format!("z2:t[{}]",i).as_str())?;

            acci += 2;
        }
    }

    Ok(())
}

  // Model logistic regression (regularized with full 2-norm of theta)
  // X - n x d matrix of data points
  // y - length n vector classifying training points
  // lamb - regularization parameter
#[allow(non_snake_case)]
fn logistic_regression(X : &[f64],
                       Y : &[bool],
                       lamb : f64) -> Result<Vec<f64>,String> {
    let n = Y.len() as i32;
    let d = (X.len()/Y.len()) as i32;  // num samples, dimension

    /* Create the optimization task. */
    let mut task = match Task::new() {
        Some(e) => e,
        None => return Err("Failed to create task".to_string()),
        }.with_callbacks();
    task.put_stream_callback(Streamtype::LOG, |msg| print!("{}",msg))?;

    // Variables [r; theta; t]
    let nvar : i32 = 1+d+n;
    task.append_vars(nvar)?;
    task.put_var_bound_slice_const(0, nvar, Boundkey::FR, -INF, INF)?;
    let (r,theta,t) = (0i32,1i32,1+d);
    task.put_var_name(r,"r")?;
    for j in 0..d { task.put_var_name(theta+j,format!("theta[{}]",j).as_str())?; }
    for j in 0..n { task.put_var_name(t+j,format!("t[{}]",j).as_str())?; }

    // Objective lambda*r + sum(t)
    task.put_c_j(r, lamb)?;
    for i in 0..n { task.put_c_j(t+i, 1.0)?; }
    task.put_obj_sense(Objsense::MINIMIZE)?;

    // Softplus function constraints
    softplus(& mut task, d, n, theta, t, X, Y)?;

    // Regularization
    // Append a sequence of linear expressions (r, theta) to F
    let numafe = task.get_num_afe()?;
    task.append_afes(1+d as i64)?;
    task.put_afe_f_entry(numafe, r, 1.0)?;
    for i in 0..d {
        task.put_afe_f_entry(numafe + i as i64 + 1, theta + i, 1.0)?;
    }

    // Add the constraint
    {
        let dom = task.append_quadratic_cone_domain((1+d) as i64)?;
        task.append_acc_seq(dom,
                            numafe,
                            vec![0.0; 1+d as usize].as_slice())?;
    }
    // Solution
    task.write_data("logistic.ptf")?;
    task.optimize()?;

    let mut xx = vec![0.0; d as usize];
    task.get_xx_slice(Soltype::ITR, theta, theta+d as i32,xx.as_mut_slice())?;
    Ok(xx)
}

#[allow(non_snake_case)]
fn main() -> Result<(),String> {
    // Test: detect and approximate a circle using degree 2 polynomials
    let n : i32 = 30;
    let d : i32 = 2;
    let (X,Y) = {
        let mut Y = vec![false;(n*n) as usize];
        let mut x1 = vec![0.0;(n*n) as usize];
        let mut x2 = vec![0.0;(n*n) as usize];
        let step = 2.0/((n-1) as f64);
        for (x1i,x2i,yi,(z1,z2)) in izip!(x1.iter_mut(),x2.iter_mut(),Y.iter_mut(),
                                          iproduct!((0..30).map(|i| -1.0 + (i as f64) * step),
                                                    (0..30).map(|i| -1.0 + (i as f64) * step))) {
            *x1i = z1; *x2i = z2; *yi = z1*z1+z2*z2 >= 0.69;
        }

        let X : Vec<f64> = iproduct!(izip!(x1,x2),iproduct!(0..d+1,0..d+1)).filter_map(|((p0,p1),(a,b))| if a+b <= d {Some(f64::powi(p0,a)*f64::powi(p1,b))} else {None}).collect();

        (X,Y)
    };

    let theta = logistic_regression( X.as_slice(), Y.as_slice(), 0.1)?;

    println!("theta = {:?}",theta);

    return Result::Ok(());
}


#[cfg(test)]
mod tests {
    #[test]
    fn test() {
        super::main().unwrap();
    }
}