1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
// Copyright (c) 2016-2020 Fabian Schuiki

//! Type declarations and references to them.

use std::fmt::{self, Debug, Display};

use crate::common::name::Name;
use crate::common::source::Span;

use crate::ty2::prelude::*;
use crate::ty2::Subtype;

/// A type name.
///
/// Types can be declared by the user or be provided as a builtin. In the case
/// of a user-defined type we would like to keep track of its `Span` for good
/// error messages. Builtin types have no location we can refer to however, and
/// we must rather keep track of the name directly.
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
pub enum TypeName {
    /// The name is defined through an internalized name.
    Name(Name),
    /// The name is defined through a span.
    Span(Span),
}

impl From<Name> for TypeName {
    fn from(name: Name) -> TypeName {
        TypeName::Name(name)
    }
}

impl From<Span> for TypeName {
    fn from(span: Span) -> TypeName {
        TypeName::Span(span)
    }
}

impl TypeName {
    /// Get the type name as a string.
    pub fn to_string(self) -> String {
        match self {
            TypeName::Name(name) => name.into(),
            TypeName::Span(span) => span.extract(),
        }
    }

    /// Get the type name as a `Name`.
    ///
    /// Returns `None` if the type name is given through a `Span`.
    pub fn as_name(self) -> Option<Name> {
        match self {
            TypeName::Name(name) => Some(name),
            _ => None,
        }
    }

    /// Get the type name as a `Span`.
    ///
    /// Returns `None` if the type name is given as a `Name`.
    pub fn as_span(self) -> Option<Span> {
        match self {
            TypeName::Span(span) => Some(span),
            _ => None,
        }
    }
}

impl Display for TypeName {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            TypeName::Name(name) => write!(f, "{}", name),
            TypeName::Span(span) => write!(f, "{}", span.extract()),
        }
    }
}

impl Debug for TypeName {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        Display::fmt(self, f)
    }
}

/// A type declaration.
///
/// A `TypeDecl` associates a name with a type. It is useful as a tracker of how
/// a type was called upon its definition, and where it was defined.
///
/// # Examples
///
/// ```
/// use moore_vhdl::ty2::{Type, TypeDecl, IntegerBasetype, Range};
/// use moore_common::name::get_name_table;
///
/// let ta = IntegerBasetype::new(Range::descending(31, 0));
/// let a = TypeDecl::new(
///     get_name_table().intern("DATA", false),
///     &ta,
/// );
///
/// assert_eq!(format!("{}", a), "type DATA is 31 downto 0");
/// ```
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct TypeDecl<'t> {
    name: TypeName,
    ty: &'t Type,
}

impl<'t> TypeDecl<'t> {
    /// Create a new type declaration from a name and a type.
    pub fn new<N: Into<TypeName>>(name: N, ty: &'t Type) -> TypeDecl<'t> {
        TypeDecl {
            name: name.into(),
            ty: ty,
        }
    }

    /// Get the name of the declared type.
    pub fn name(&self) -> TypeName {
        self.name
    }

    /// Get the declared type.
    pub fn ty(&self) -> &'t Type {
        self.ty
    }
}

impl<'t> Type for TypeDecl<'t> {
    fn is_scalar(&self) -> bool {
        self.ty.is_scalar()
    }

    fn is_discrete(&self) -> bool {
        self.ty.is_discrete()
    }

    fn is_numeric(&self) -> bool {
        self.ty.is_numeric()
    }

    fn is_composite(&self) -> bool {
        self.ty.is_composite()
    }

    fn into_owned<'a>(self) -> OwnedType<'a>
    where
        Self: 'a,
    {
        self.ty.to_owned()
    }

    fn to_owned<'a>(&self) -> OwnedType<'a>
    where
        Self: 'a,
    {
        self.ty.to_owned()
    }

    fn as_any(&self) -> AnyType {
        self.ty.as_any()
    }
}

impl<'t> Display for TypeDecl<'t> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "type {} is {}", self.name, self.ty)
    }
}

/// A subtype declaration.
///
/// A `SubtypeDecl` associates a name with a subtype. It is useful as a tracker
/// of how a subtype was called upon its definition, and where it was defined.
#[derive(Clone, Copy, Debug)]
pub struct SubtypeDecl<'t> {
    name: TypeName,
    ty: &'t Subtype, // TODO: Actually make this a subtype indication.
}

/// A type mark.
///
/// A `TypeMark` associates a name with a type or subtype, but in a different
/// manner than `TypeDecl` and `SubtypeDecl`. It is useful as a tracker of how a
/// type was referred to in the source code. A `TypeMark` represents a way of
/// naming a type that is familiar to the user and can be presented as is in a
/// diagnostic message.
///
/// # Examples
///
/// ```
/// use moore_vhdl::ty2::{Type, TypeMark, NullType};
/// use moore_common::name::get_name_table;
///
/// let ta = NullType;
/// let a = TypeMark::new(
///     get_name_table().intern("DATA", false),
///     &ta,
/// );
///
/// assert_eq!(format!("{}", a), "DATA");
/// ```
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct TypeMark<'t> {
    name: TypeName,
    ty: &'t Type,
}

impl<'t> TypeMark<'t> {
    /// Create a new type mark from a name and a type.
    pub fn new<N: Into<TypeName>>(name: N, ty: &'t Type) -> TypeMark<'t> {
        TypeMark {
            name: name.into(),
            ty: ty,
        }
    }

    /// Get the name of the mark.
    pub fn name(&self) -> TypeName {
        self.name
    }

    /// Get the type of the mark.
    pub fn ty(&self) -> &'t Type {
        self.ty
    }
}

impl<'t> Type for TypeMark<'t> {
    fn is_scalar(&self) -> bool {
        self.ty.is_scalar()
    }

    fn is_discrete(&self) -> bool {
        self.ty.is_discrete()
    }

    fn is_numeric(&self) -> bool {
        self.ty.is_numeric()
    }

    fn is_composite(&self) -> bool {
        self.ty.is_composite()
    }

    fn into_owned<'a>(self) -> OwnedType<'a>
    where
        Self: 'a,
    {
        self.ty.to_owned()
    }

    fn to_owned<'a>(&self) -> OwnedType<'a>
    where
        Self: 'a,
    {
        self.ty.to_owned()
    }

    fn as_any(&self) -> AnyType {
        self.ty.as_any()
    }
}

impl<'t> Display for TypeMark<'t> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.name)
    }
}