1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
// Copyright (c) 2016-2019 Fabian Schuiki

//! Representation of constant values and their operations
//!
//! This module implements a representation for values that may arise within a
//! SystemVerilog source text and provides ways of executing common operations
//! such as addition and multiplication. It also provides the ability to
//! evaluate the constant value of nodes in a context.
//!
//! The operations in this module are intended to panic if invalid combinations
//! of values are used. The compiler's type system should catch and prevent such
//! uses.

use crate::{
    crate_prelude::*,
    hir::HirNode,
    ty::{bit_size_of_type, Type, TypeKind},
    ParamEnv, ParamEnvBinding,
};
use bit_vec::BitVec;
use num::{BigInt, BigRational, One, ToPrimitive, Zero};

/// A verilog value.
pub type Value<'t> = &'t ValueData<'t>;

/// The data associated with a value.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct ValueData<'t> {
    /// The type of the value.
    pub ty: Type<'t>,
    /// The actual value.
    pub kind: ValueKind<'t>,
}

/// The different forms a value can assume.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub enum ValueKind<'t> {
    /// The `void` value.
    Void,
    /// An arbitrary precision integer.
    ///
    /// The first field contains the value. The second field indicates the
    /// special bits (x or z), and the third indicates the x bits.
    Int(BigInt, BitVec, BitVec),
    /// An arbitrary precision time interval.
    Time(BigRational),
    /// A struct.
    StructOrArray(Vec<Value<'t>>),
}

impl<'t> ValueData<'t> {
    /// Check if this value evaluates to true.
    pub fn is_true(&self) -> bool {
        !self.is_false()
    }

    /// Check if this value evaluates to false.
    pub fn is_false(&self) -> bool {
        match self.kind {
            ValueKind::Void => true,
            ValueKind::Int(ref v, ..) => v.is_zero(),
            ValueKind::Time(ref v) => v.is_zero(),
            ValueKind::StructOrArray(_) => false,
        }
    }

    /// Convert the value to an integer.
    pub fn get_int(&self) -> Option<&BigInt> {
        match self.kind {
            ValueKind::Int(ref v, ..) => Some(v),
            _ => None,
        }
    }
}

/// Create a new integer value.
///
/// Panics if `ty` is not an integer type. Truncates the value to `ty`.
pub fn make_int(ty: Type, value: BigInt) -> ValueData {
    let w = ty.width();
    make_int_special(
        ty,
        value,
        BitVec::from_elem(w, false),
        BitVec::from_elem(w, false),
    )
}

/// Create a new integer value with special bits.
///
/// Panics if `ty` is not an integer type. Truncates the value to `ty`.
pub fn make_int_special(
    ty: Type,
    mut value: BigInt,
    special_bits: BitVec,
    x_bits: BitVec,
) -> ValueData {
    match *ty {
        TypeKind::Int(width, _)
        | TypeKind::BitVector {
            range: ty::Range { size: width, .. },
            ..
        } => {
            value = value % (BigInt::from(1) << width);
        }
        TypeKind::Bit(_) | TypeKind::BitScalar { .. } => {
            value = value % 2;
        }
        _ => panic!("create int value `{}` with non-int type {:?}", value, ty),
    }
    ValueData {
        ty: ty,
        kind: ValueKind::Int(value, special_bits, x_bits),
    }
}

/// Create a new time value.
pub fn make_time(value: BigRational) -> ValueData<'static> {
    ValueData {
        ty: &ty::TIME_TYPE,
        kind: ValueKind::Time(value),
    }
}

/// Create a new struct value.
pub fn make_struct<'t>(ty: Type<'t>, fields: Vec<Value<'t>>) -> ValueData<'t> {
    assert!(ty.is_struct());
    ValueData {
        ty: ty,
        kind: ValueKind::StructOrArray(fields),
    }
}

/// Create a new array value.
pub fn make_array<'t>(ty: Type<'t>, elements: Vec<Value<'t>>) -> ValueData<'t> {
    assert!(ty.is_array());
    ValueData {
        ty: ty,
        kind: ValueKind::StructOrArray(elements),
    }
}

/// Determine the constant value of a node.
pub(crate) fn constant_value_of<'gcx>(
    cx: &impl Context<'gcx>,
    node_id: NodeId,
    env: ParamEnv,
) -> Result<Value<'gcx>> {
    let hir = cx.hir_of(node_id)?;
    match hir {
        HirNode::Expr(expr) => const_expr(cx, expr, env),
        HirNode::ValueParam(param) => {
            let env_data = cx.param_env_data(env);
            match env_data.find_value(node_id) {
                Some(ParamEnvBinding::Indirect(assigned_id)) => {
                    return cx.constant_value_of(assigned_id.0, assigned_id.1)
                }
                Some(ParamEnvBinding::Direct(v)) => return Ok(v),
                _ => (),
            }
            if let Some(default) = param.default {
                return cx.constant_value_of(default, env);
            }
            let mut d = DiagBuilder2::error(format!(
                "{} not assigned and has no default",
                param.desc_full(),
            ));
            let contexts = cx.param_env_contexts(env);
            for &context in &contexts {
                d = d.span(cx.span(context));
            }
            if contexts.is_empty() {
                d = d.span(param.human_span());
            }
            cx.emit(d);
            Err(())
        }
        HirNode::GenvarDecl(decl) => {
            let env_data = cx.param_env_data(env);
            match env_data.find_value(node_id) {
                Some(ParamEnvBinding::Indirect(assigned_id)) => {
                    return cx.constant_value_of(assigned_id.0, assigned_id.1)
                }
                Some(ParamEnvBinding::Direct(v)) => return Ok(v),
                _ => (),
            }
            if let Some(init) = decl.init {
                return cx.constant_value_of(init, env);
            }
            cx.emit(
                DiagBuilder2::error(format!("{} not initialized", decl.desc_full()))
                    .span(decl.human_span()),
            );
            Err(())
        }
        HirNode::VarDecl(_) => {
            cx.emit(
                DiagBuilder2::error(format!("{} has no constant value", hir.desc_full()))
                    .span(hir.human_span()),
            );
            Err(())
        }
        HirNode::EnumVariant(var) => match var.value {
            Some(v) => cx.constant_value_of(v, env),
            None => Ok(cx.intern_value(make_int(cx.type_of(node_id, env)?, var.index.into()))),
        },
        _ => cx.unimp_msg("constant value computation of", &hir),
    }
}

/// Determine the constant value of an expression.
fn const_expr<'gcx>(
    cx: &impl Context<'gcx>,
    expr: &hir::Expr,
    env: ParamEnv,
) -> Result<Value<'gcx>> {
    let ty = cx.type_of(expr.id, env)?;
    #[allow(unreachable_patterns)]
    match expr.kind {
        hir::ExprKind::IntConst {
            value: ref k,
            ref special_bits,
            ref x_bits,
            ..
        } => Ok(cx.intern_value(make_int_special(
            ty,
            k.clone(),
            special_bits.clone(),
            x_bits.clone(),
        ))),
        hir::ExprKind::UnsizedConst('0') => Ok(cx.intern_value(make_int(ty, num::zero()))),
        hir::ExprKind::UnsizedConst('1') => Ok(cx.intern_value(make_int(ty, num::one()))),
        hir::ExprKind::TimeConst(ref k) => Ok(cx.intern_value(make_time(k.clone()))),
        hir::ExprKind::StringConst(_) => Ok(cx.intern_value(make_array(
            // TODO(fschuiki): Actually assemble a real string here!
            cx.mkty_packed_array(1, &ty::BYTE_TYPE),
            vec![cx.intern_value(make_int(&ty::BYTE_TYPE, num::zero()))],
        ))),
        hir::ExprKind::Ident(_) | hir::ExprKind::Scope(..) => {
            let binding = cx.resolve_node(expr.id, env)?;
            match cx.constant_value_of(binding, env) {
                Ok(k) => Ok(k),
                Err(_) => {
                    let hir = cx.hir_of(binding)?;
                    cx.emit(
                        DiagBuilder2::note(format!(
                            "constant value of {} needed here",
                            hir.desc_full()
                        ))
                        .span(cx.span(expr.id)),
                    );
                    Err(())
                }
            }
        }
        hir::ExprKind::Unary(op, arg) => {
            let arg_val = cx.constant_value_of(arg, env)?;
            match arg_val.kind {
                ValueKind::Int(ref arg, ..) => Ok(cx.intern_value(make_int(
                    ty,
                    const_unary_op_on_int(cx, expr.span, ty, op, arg)?,
                ))),
                _ => {
                    cx.emit(
                        DiagBuilder2::error(format!(
                            "{} cannot be applied to the given arguments",
                            op.desc_full(),
                        ))
                        .span(expr.span()),
                    );
                    Err(())
                }
            }
        }
        hir::ExprKind::Binary(op, lhs, rhs) => {
            let lhs_val = cx.constant_value_of(lhs, env)?;
            let rhs_val = cx.constant_value_of(rhs, env)?;
            match (&lhs_val.kind, &rhs_val.kind) {
                (&ValueKind::Int(ref lhs, ..), &ValueKind::Int(ref rhs, ..)) => Ok(cx
                    .intern_value(make_int(
                        ty,
                        const_binary_op_on_int(cx, expr.span, ty, op, lhs, rhs)?,
                    ))),
                _ => {
                    cx.emit(
                        DiagBuilder2::error(format!(
                            "{} cannot be applied to the given arguments",
                            op.desc_full(),
                        ))
                        .span(expr.span()),
                    );
                    Err(())
                }
            }
        }
        hir::ExprKind::Builtin(hir::BuiltinCall::Unsupported) => {
            Ok(cx.intern_value(make_int(ty, num::zero())))
        }
        hir::ExprKind::Builtin(hir::BuiltinCall::Clog2(arg)) => {
            let arg_val = cx.constant_value_of(arg, env)?;
            let arg_int = match arg_val.kind {
                ValueKind::Int(ref arg, ..) => arg,
                _ => unreachable!(),
            };
            let value = if arg_int <= &BigInt::one() {
                BigInt::zero()
            } else {
                BigInt::from((arg_int - BigInt::one()).bits())
            };
            Ok(cx.intern_value(make_int(arg_val.ty, value)))
        }
        hir::ExprKind::Builtin(hir::BuiltinCall::Bits(arg)) => {
            let ty = cx.type_of(arg, env)?;
            Ok(cx.intern_value(make_int(
                cx.mkty_int(32),
                bit_size_of_type(cx, ty, env)?.into(),
            )))
        }
        hir::ExprKind::Ternary(cond, true_expr, false_expr) => {
            let cond_val = cx.constant_value_of(cond, env)?;
            match cond_val.is_true() {
                true => cx.constant_value_of(true_expr, env),
                false => cx.constant_value_of(false_expr, env),
            }
        }
        hir::ExprKind::Field(target, _field_name) => {
            let (_, field_index, _) = cx.resolve_field_access(expr.id, env)?;
            let target_value = cx.constant_value_of(target, env)?;
            match target_value.kind {
                ValueKind::StructOrArray(ref fields) => Ok(fields[field_index]),
                _ => Err(()),
            }
        }
        hir::ExprKind::PositionalPattern(..)
        | hir::ExprKind::NamedPattern(..)
        | hir::ExprKind::RepeatPattern(..) => {
            let mut resolved = resolver::resolve_pattern(cx, expr.id, env)?;
            resolved.sort_by(|(a, _), (b, _)| a.cmp(b));
            trace!("resolved {:?} to {:#?}", expr.kind, resolved);
            let fields = resolved
                .into_iter()
                .map(|(_, v)| cx.constant_value_of(v, env))
                .collect::<Result<Vec<_>>>()?;
            let ty = cx.type_of(expr.id, env)?;
            let v = cx.intern_value(match *ty {
                TypeKind::Named(_, _, TypeKind::Struct(..)) | TypeKind::Struct(..) => {
                    make_struct(ty, fields)
                }
                TypeKind::Named(_, _, TypeKind::PackedArray(..)) | TypeKind::PackedArray(..) => {
                    make_array(ty, fields)
                }
                _ => unreachable!(),
            });
            trace!("pattern yielded {:#?}", v);
            Ok(v)
        }
        hir::ExprKind::EmptyPattern => {
            cx.emit(
                DiagBuilder2::error(format!("{} has no constant value", expr.desc_full()))
                    .span(expr.span()),
            );
            Err(())
        }
        hir::ExprKind::Concat(..) => {
            let mir = cx.mir_rvalue(expr.id, env);
            const_mir(cx, mir)
        }
        _ => cx.unimp_msg("constant value computation of", expr),
    }
}

fn const_unary_op_on_int<'gcx>(
    cx: &impl Context<'gcx>,
    span: Span,
    ty: Type<'gcx>,
    op: hir::UnaryOp,
    arg: &BigInt,
) -> Result<BigInt> {
    Ok(match op {
        hir::UnaryOp::Pos => arg.clone(),
        hir::UnaryOp::Neg => -arg,
        hir::UnaryOp::BitNot => (BigInt::one() << ty.width()) - 1 - arg,
        hir::UnaryOp::LogicNot => (arg.is_zero() as usize).into(),
        _ => {
            cx.emit(
                DiagBuilder2::error(format!(
                    "{} cannot be applied to integer `{}`",
                    op.desc_full(),
                    arg,
                ))
                .span(span),
            );
            return Err(());
        }
    })
}

fn const_binary_op_on_int<'gcx>(
    cx: &impl Context<'gcx>,
    span: Span,
    ty: Type<'gcx>,
    op: hir::BinaryOp,
    lhs: &BigInt,
    rhs: &BigInt,
) -> Result<BigInt> {
    Ok(match op {
        hir::BinaryOp::Add => lhs + rhs,
        hir::BinaryOp::Sub => lhs - rhs,
        hir::BinaryOp::Mul => lhs * rhs,
        hir::BinaryOp::Div => lhs / rhs,
        hir::BinaryOp::Mod => lhs % rhs,
        hir::BinaryOp::Pow => {
            let mut result = num::one();
            let mut cnt = rhs.clone();
            while !cnt.is_zero() {
                result = result * lhs;
                cnt = cnt - 1;
            }
            result
        }
        hir::BinaryOp::Eq => ((lhs == rhs) as usize).into(),
        hir::BinaryOp::Neq => ((lhs != rhs) as usize).into(),
        hir::BinaryOp::Lt => ((lhs < rhs) as usize).into(),
        hir::BinaryOp::Leq => ((lhs <= rhs) as usize).into(),
        hir::BinaryOp::Gt => ((lhs > rhs) as usize).into(),
        hir::BinaryOp::Geq => ((lhs >= rhs) as usize).into(),
        hir::BinaryOp::LogicShL | hir::BinaryOp::ArithShL => match rhs.to_isize() {
            Some(sh) if sh < 0 => lhs >> -sh as usize,
            Some(sh) => lhs << sh as usize,
            None => num::zero(),
        },
        hir::BinaryOp::LogicShR | hir::BinaryOp::ArithShR => match rhs.to_isize() {
            Some(sh) if sh < 0 => lhs << -sh as usize,
            Some(sh) => lhs >> sh as usize,
            None => num::zero(),
        },
        hir::BinaryOp::BitAnd => lhs & rhs,
        hir::BinaryOp::BitOr => lhs | rhs,
        hir::BinaryOp::BitXor => lhs ^ rhs,
        hir::BinaryOp::BitNand => {
            const_unary_op_on_int(cx, span, ty, hir::UnaryOp::BitNot, &(lhs & rhs))?
        }
        hir::BinaryOp::BitNor => {
            const_unary_op_on_int(cx, span, ty, hir::UnaryOp::BitNot, &(lhs | rhs))?
        }
        hir::BinaryOp::BitXnor => {
            const_unary_op_on_int(cx, span, ty, hir::UnaryOp::BitNot, &(lhs ^ rhs))?
        }
        _ => {
            cx.emit(
                DiagBuilder2::error(format!(
                    "{} cannot be applied to constant integers `{}` and `{}`",
                    op.desc_full(),
                    lhs,
                    rhs
                ))
                .span(span),
            );
            return Err(());
        }
    })
}

fn const_mir<'gcx>(cx: &impl Context<'gcx>, mir: &'gcx mir::Rvalue<'gcx>) -> Result<Value<'gcx>> {
    match mir.kind {
        mir::RvalueKind::Concat(ref values) => {
            let mut result = BigInt::zero();
            for value in values {
                result <<= value.ty.width();
                result |= const_mir(cx, value)?.get_int().expect("concat non-integer");
            }
            Ok(cx.intern_value(make_int(mir.ty, result)))
        }

        // By default fall back to the usual method of constant value
        // computation.
        _ => cx.constant_value_of(mir.origin, mir.env),
    }
}

/// Check if a node has a constant value.
pub(crate) fn is_constant<'gcx>(cx: &impl Context<'gcx>, node_id: NodeId) -> Result<bool> {
    let hir = cx.hir_of(node_id)?;
    Ok(match hir {
        HirNode::ValueParam(_) => true,
        HirNode::GenvarDecl(_) => true,
        HirNode::EnumVariant(_) => true,
        _ => false,
    })
}

/// Determine the default value of a type.
pub(crate) fn type_default_value<'gcx>(cx: &impl Context<'gcx>, ty: Type<'gcx>) -> Value<'gcx> {
    // TODO(fschuiki): Make this function return `Result<Value<_>>`.
    match *ty {
        TypeKind::Error => cx.intern_value(ValueData {
            ty: &ty::ERROR_TYPE,
            kind: ValueKind::Void,
        }),
        TypeKind::Void => cx.intern_value(ValueData {
            ty: &ty::VOID_TYPE,
            kind: ValueKind::Void,
        }),
        TypeKind::Time => cx.intern_value(make_time(Zero::zero())),
        TypeKind::Bit(..)
        | TypeKind::Int(..)
        | TypeKind::BitVector { .. }
        | TypeKind::BitScalar { .. } => cx.intern_value(make_int(ty, Zero::zero())),
        TypeKind::Named(_, _, ty) => type_default_value(cx, ty),
        TypeKind::Struct(id) => {
            let def = cx.struct_def(id).unwrap();
            let fields = def
                .fields
                .iter()
                .map(|field| {
                    type_default_value(
                        cx,
                        cx.map_to_type(field.ty, cx.default_param_env()).unwrap(),
                    )
                })
                .collect();
            cx.intern_value(make_struct(ty, fields))
        }
        TypeKind::PackedArray(length, elem_ty) => cx.intern_value(make_array(
            ty.clone(),
            std::iter::repeat(cx.type_default_value(elem_ty.clone()))
                .take(length)
                .collect(),
        )),
    }
}