1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
use downcast::Any;
use std::rc::Rc;
use rand::Rng;

//----------------------------------------------------------------------
// AST Traits

/// Main trait to be implemented for AST node types
pub trait AstNode: Any+Mutatable+Copyable+Sync {
    /// Identify the node type, because Any::get_type_id() is unstable.
    fn node_type(&self) -> usize;

    /// Return all children of this node.
    fn children(&self) -> Vec<&AstNode>;

    /// Return a copy of this node with a single child node replaced.
    fn replace_child(&self, old_child: &AstNode, new_child: &mut Option<Box<AstNode>>) -> Box<AstNode>;
}

impl_downcast!(AstNode);
downcast_methods!(AstNode);

/// Mutation trait for nodes
///
/// Implement this if you want to do controlled mutation of nodes.  For example,
/// changing the node type without changing the children, or changing the number
/// value in a controlled way.
///
/// When not explicitly specified, a default implementation is provided for
/// nodes that also implement `RandNode`, which completely replaces the node
/// with a random subtree.
pub trait Mutatable {
    /// Return a mutation of this node
    fn mutate(&self, max_height: i32, rng: &mut Rng) -> Box<AstNode>;
}

/// Like `Clone`, but can be called on a trait object.
///
/// Used during crossover. Automatically implemented for every type that is also
/// `Clone`.
pub trait Copyable {
    /// Like clone(), but unsized. Necessary during crossover.
    fn copy(&self) -> Box<AstNode>;
}

/// Default implementation of Copyable for nodes that are Clone
impl <T: Clone+AstNode> Copyable for T {
    fn copy(&self) -> Box<AstNode> { Box::new(self.clone()) }
}

//----------------------------------------------------------------------
// AST Operations

/// Return the depth of an AST tree.
pub fn depth(node: &AstNode) -> usize {
    1 + node.children().into_iter().map(|c| depth(c)).max().unwrap_or(0)
}

/// A zipper-like structure pointing to a tree node, so a modified copy of the
/// tree can be reconstructed.
#[derive(Clone)]
pub struct NodeInTree<'a> {
    pub node: &'a AstNode,
    pub root_path: Option<Rc<NodeInTree<'a>>>
}

/// Return all nodes in a given AST tree.
pub fn find_nodes_and_parents<'a>(root: &'a AstNode) -> Vec<Rc<NodeInTree<'a>>> {
    let mut result: Vec<Rc<NodeInTree<'a>>> = vec![];
    result.reserve(100);  // Skip some resizes we have to do on medium-sized trees

    let current_root_path = Rc::new(NodeInTree { node: root, root_path: None });
    result.push(current_root_path.clone());
    find_nodes_and_parents_into(root, &current_root_path, &mut result);

    result
}

fn find_nodes_and_parents_into<'a>(parent: &'a AstNode,
                               parent_root_path: &Rc<NodeInTree<'a>>,
                               acc: &mut Vec<Rc<NodeInTree<'a>>>) {
    for node in parent.children() {
        let current_root_path = Rc::new(NodeInTree { node: node.clone(), root_path: Some(parent_root_path.clone()) });
        acc.push(current_root_path.clone());
        find_nodes_and_parents_into(node, &current_root_path, acc);
    }
}

struct TraitObject {
    pub data: *mut (),
    pub vtable: *mut (),
}

/// Compare a real node and a node trait
fn same_node<T: AstNode>(node1: &T, node2: &AstNode) -> bool {
    use std::mem;
    unsafe {
        let address: *mut() = mem::transmute(node1);
        let obj: TraitObject = mem::transmute(node2);
        address == obj.data
    }
}

/// Helper function for use inside `replace_children()`.
///
/// Call this for every child node in `replace_children()`. The new_child is a
/// `&mut Option<>` so that we can be sure we consume it exactly once.
pub fn clone_or_replace<T: AstNode+Clone>(child: &T, old_child: &AstNode, new_child: &mut Option<Box<AstNode>>) -> Box<T> {
    if same_node(child, old_child) {
        new_child.take().unwrap().downcast::<T>().ok().unwrap()
    } else {
        Box::new(child.clone())
    }
}

/// Return a copy of the entire tree, replacing the indicated node with another.
pub fn replace_to_root<T: AstNode>(nap: &Rc<NodeInTree>, new_child: Box<AstNode>) -> Box<T> {
    let mut new_child_opt = Some(new_child);
    do_replace_to_root(nap, &mut new_child_opt)
}

fn do_replace_to_root<T: AstNode>(nap: &Rc<NodeInTree>, new_child: &mut Option<Box<AstNode>>) -> Box<T> {
    match nap.root_path {
        None => new_child.take().unwrap().downcast().ok().unwrap(),
        Some(ref parent) => {
            let mut new_node = Some(parent.node.replace_child(nap.node, new_child));
            do_replace_to_root(parent, &mut new_node)
        }
    }
}

//----------------------------------------------------------------------
// Tests

#[cfg(test)]
mod tests {
    use super::*;
    use rand::Rng;

    #[derive(Clone,PartialEq,Eq,Debug)]
    enum TestNode {
        Leaf(u32),
        Node(u32, Box<TestNode>),
        Two(u32, Box<TestNode>, Box<TestNode>)
    }

    impl AstNode for TestNode {
        fn node_type(&self) -> usize { 0 }

        fn children(&self) -> Vec<&AstNode> {
            match *self {
                TestNode::Leaf(_) => vec![],
                TestNode::Node(_, ref x) => vec![x.as_ref()],
                TestNode::Two(_, ref x, ref y) => vec![x.as_ref(), y.as_ref()],
            }
        }

        fn replace_child(&self, old_child: &AstNode, new_child: &mut Option<Box<AstNode>>) -> Box<AstNode> {
            Box::new(match *self {
                TestNode::Leaf(_) => self.clone(),
                TestNode::Node(n, ref x) => TestNode::Node(n,
                                                           clone_or_replace(x, old_child, new_child)),
                TestNode::Two(n, ref x, ref y) => TestNode::Two(n,
                                                                clone_or_replace(x, old_child, new_child),
                                                                clone_or_replace(y, old_child, new_child)),
            })
        }
    }

    impl Mutatable for TestNode {
        fn mutate(&self, _: i32, _: &mut Rng) -> Box<AstNode> {
            Box::new(self.clone())
        }
    }

    fn expect_node(value: u32, ast: &AstNode) {
        let x = ast.downcast_ref::<TestNode>().unwrap();
        if let TestNode::Node(v, _) = *x {
            assert!(v == value);
        } else {
            assert!(false);
        }
    }

    #[test]
    fn test_find_parents() {
        let tree = Box::new(TestNode::Node(0,
            Box::new(TestNode::Node(1,
                    Box::new(TestNode::Node(2,
                            Box::new(TestNode::Leaf(3))))))));

        let results = find_nodes_and_parents(tree.as_ref());

        expect_node(0, results[0].node);
        assert!(results[0].root_path.is_none());

        expect_node(1, results[1].node);
        expect_node(0, results[1].root_path.as_ref().unwrap().node);

        expect_node(2, results[2].node);
        expect_node(1, results[2].root_path.as_ref().unwrap().node);
        expect_node(0, results[2].root_path.as_ref().unwrap().root_path.as_ref().unwrap().node);
    }

    #[test]
    fn test_replace_child() {
        let tree = TestNode::Two(0,
            Box::new(TestNode::Leaf(1)),
            Box::new(TestNode::Leaf(2)));

        let old_child = tree.children()[1];
        let mut new_child = Some(Box::new(TestNode::Leaf(3)) as Box<AstNode>);
        let new_tree = tree.replace_child(old_child, &mut new_child);

        assert_eq!(&TestNode::Two(0,
            Box::new(TestNode::Leaf(1)),
            Box::new(TestNode::Leaf(3))), new_tree.downcast_ref::<TestNode>().unwrap());
    }

    #[test]
    fn test_depth() {
        let tree = TestNode::Two(0,
            Box::new(TestNode::Leaf(1)),
            Box::new(TestNode::Leaf(2)));

        assert_eq!(2, depth(&tree));
    }
}