1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
#![deny(missing_docs)]

//! # Monotonic-Solver
//! A monotonic solver designed to be easy to use with Rust enum expressions
//!
//! This can be used to:
//!
//! - Research modeling of common sense for artificial intelligence
//! - Test inference rules when studying logic and languages
//! - Generate story plots
//! - Search and extract data
//!
//! Used in [Avalog](https://github.com/advancedresearch/avalog),
//! an experimental implementation of Avatar Logic with a Prolog-like syntax.
//!
//! Blog posts:
//!
//! - [2017-07-25 New Library for Automated Monotonic Theorem Proving](https://github.com/advancedresearch/advancedresearch.github.io/blob/master/blog/2017-07-25-new-library-for-automated-monotonic-theorem-proving.md)
//!
//! The advantage of this library design is the ease-of-use for prototyping.
//! In a few hours, one can test a new idea for modeling common sense.
//!
//! Here is an example of program output (from "examples/drama.rs"):
//!
//! ```text
//! Bob murdered Alice with a gun
//! Bob shot Alice with a gun
//! Bob pulled the trigger of the gun
//! Bob aimed the gun at Alice
//! ```
//!
//! This is a program that generates drama story plots.
//! The solver starts with the ending and work backwards to the beginning.
//!
//! - Start: "Bob murdered Alice with a gun"
//! - Goal: "Bob aimed the gun at Alice".
//!
//! You can follow the reasoning step-by-step,
//! printed out as sentences in natural language or code.
//!
//!
//! When using this story plot for writing, you might do something like this:
//!
//! ```text
//! Bob picked up the gun and aimed it Alice.
//! "I hate you!" he cried.
//! "Wait, I can explain..." Alice raised her hands.
//! A loud bang.
//! Bob realized in the same moment what he did.
//! Something he never would believe if anyone had told him as a child.
//! He was now a murderer.
//! ```
//!
//! This particular program reasons backwards in time to take advantage of monotonic logic.
//! It helps to avoid explosive combinatorics of possible worlds.
//!
//! Technically, this solver can also be used when multiple contradicting facts lead
//! to the same goal.
//! The alternative histories, that do not lead to a goal, are erased when
//! the solver reduces the proof after finding a solution.
//!
//! ### Example
//!
//! Here is the full source code of a "examples/groceries.rs" that figures out which fruits
//! a person will buy from the available food and taste preferences.
//!
//! ```rust
//! extern crate monotonic_solver;
//!
//! use monotonic_solver::{search, Solver};
//!
//! use Expr::*;
//! use Fruit::*;
//! use Taste::*;
//! use Person::*;
//!
//! #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
//! pub enum Person {
//!     Hannah,
//!     Peter,
//!     Clara,
//! }
//!
//! #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
//! pub enum Taste {
//!     Sweet,
//!     Sour,
//!     Bitter,
//!     NonSour,
//! }
//!
//! impl Taste {
//!     fn likes(&self, fruit: Fruit) -> bool {
//!         *self == Sweet && fruit.is_sweet() ||
//!         *self == Sour && fruit.is_sour() ||
//!         *self == Bitter && fruit.is_bitter() ||
//!         *self == NonSour && !fruit.is_sour()
//!     }
//! }
//!
//! #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
//! pub enum Fruit {
//!     Apple,
//!     Grape,
//!     Lemon,
//!     Orange,
//! }
//!
//! impl Fruit {
//!     fn is_sweet(&self) -> bool {
//!         match *self {Orange | Apple => true, Grape | Lemon => false}
//!     }
//!
//!     fn is_sour(&self) -> bool {
//!         match *self {Lemon | Orange => true, Apple | Grape => false}
//!     }
//!
//!     fn is_bitter(&self) -> bool {
//!         match *self {Grape | Lemon => true, Apple | Orange => false}
//!     }
//! }
//!
//! #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
//! pub enum Expr {
//!     ForSale(Fruit),
//!     Preference(Person, Taste, Taste),
//!     Buy(Person, Fruit),
//! }
//!
//! fn infer(solver: Solver<Expr>, story: &[Expr]) -> Option<Expr> {
//!     for expr in story {
//!         if let &Preference(x, taste1, taste2) = expr {
//!             for expr2 in story {
//!                 if let &ForSale(y) = expr2 {
//!                     // Both tastes must be satisfied for the fruit.
//!                     if taste1.likes(y) && taste2.likes(y) {
//!                         let new_expr = Buy(x, y);
//!                         if solver.can_add(&new_expr) {return Some(new_expr)};
//!                     }
//!                 }
//!             }
//!         }
//!     }
//!     None
//! }
//!
//! fn main() {
//!     let start = vec![
//!         ForSale(Orange),
//!         ForSale(Grape),
//!         ForSale(Apple),
//!         ForSale(Lemon),
//!         Preference(Hannah, Sour, Bitter),
//!         Preference(Peter, Sour, Sweet),
//!         Preference(Peter, NonSour, Bitter),
//!         Preference(Clara, NonSour, Sweet),
//!     ];
//!     let order_constraints = vec![
//!         // Peter likes grape better than orange.
//!         (Buy(Peter, Grape), Buy(Peter, Orange)),
//!     ];
//!
//!     // Look up what this person will buy.
//!     let person = Peter;
//!
//!     let (res, _) = search(
//!         &start,
//!         |expr| if let &Buy(x, y) = expr {if x == person {Some(y)} else {None}} else {None},
//!         Some(1000), // max proof size.
//!         &[],
//!         &order_constraints,
//!         infer,
//!     );
//!     println!("{:?} will buy:", person);
//!     for r in res {
//!         println!("- {:?}", r);
//!     }
//! }
//! ```
//!
//! When you run this program, it will output:
//!
//! ```text
//! Peter will buy:
//! - Grape
//! - Orange
//! ```
//!
//! This is what Peter will buy.
//!
//! Notice the following kinds of constraints:
//!
//! - People prefer some fruits above others
//! - A fruit can give multiple tasting experiences
//! - All tasting experiences must be satisfied for people to buy the fruit
//! - Not all kinds of fruits are available all the time
//! - People's preferences are combinations of tasting experiences
//! - People might change preferences over time
//!
//! When you start to code a new idea, you might only know vaguely
//! what the solver should do. Experiment!
//!
//! ### Design
//!
//! A monotonic solver is an automatic theorem prover that finds proofs using
//! forward-only search. The word "monotonic" means additional facts do not cancel
//! the truth value of previously added facts.
//!
//! This theorem prover is designed to work on AST (Abstract Syntax Tree)
//! described with Rust enums.
//! The API is low level to allow precise control over performance,
//! by taking advantage of `HashSet` cache for inferred facts and filtering.
//!
//! - `solve_and_reduce` is most commonly used, because it first finds a proof
//! and then removes all facts that are inferred but irrelevant.
//! - `solve` is used to show exhaustive search for facts, for e.g. debugging.
//!
//! The API is able to simplify the proof without knowing anything explicit
//! about the rules, because it reasons counter-factually afterwards by modifying the filter.
//! After finding a solution, it tests each fact one by one, by re-solving the problem, starting with the latest added facts and moving to the beginning, to solve the implicit dependencies.
//! All steps in the new solution must exist in the old solution.
//! Since this can happen many times, it is important to take advantage of the cache.
//!
//! Each fact can only be added once to the solution.
//! It is therefore not necessary a good algorithm to use on long chains of events.
//! A more applicable area is modeling of common sense for short activities.
//!
//! This is the recommended way of using this library:
//!
//! 1. Model common sense for a restricted domain of reasoning
//! 2. Wrap the solver and constraints in an understandable programming interface
//!
//! The purpose is use a handful of facts to infer a few additional facts.
//! In many applications, such additional facts can be critical,
//! because they might seem so obvious to the user that they are not even mentioned.
//!
//! It can also be used to speed up productivity when serial thinking is required.
//! Human brains are not that particularly good at this kind of reasoning, at least not compared to a computer.
//!
//!
//! The challenge is to encode the rules required to make the computer an efficient reasoner.
//! This is why this library focuses on ease-of-use in a way that is familiar to Rust programmers, so multiple designs can be tested and compared with short iteration cycles.
//!
//! ### Usage
//!
//! There are two modes supported by this library: Solving and searching.
//!
//! - In solving mode, you specify a goal and the solver tries to find a proof.
//! - In searching mode, you specify a pattern and extract some data.
//!
//! The solver requires 5 things:
//!
//! 1. A list of start facts.
//! 2. A list of goal facts.
//! 3. A list of filtered facts.
//! 4. A list of order-constraints.
//! 5. A function pointer to the inference algorithm.
//!
//! Start facts are the initial conditions that trigger the search through rules.
//!
//! Goal facts decides when the search terminates.
//!
//! Filtered facts are blocked from being added to the solution.
//! This can be used as feedback to the algorithm when a wrong assumption is made.
//!
//! Order-constraints are used when facts represents events.
//! It is a list of tuples of the form `(A, B)` which controls the ordering of events.
//! The event `B` is added to the internal filter temporarily until event `A`
//! has happened.
//!
//! The search requires 6 things (similar to solver except no goal is required):
//!
//! 1. A list of start facts.
//! 2. A matching pattern to extract data.
//! 3. A maximum size of proof to avoid running out of memory.
//! 4. A list of filtered facts.
//! 5. A list of order-constraints.
//! 6. A function pointer to the inference algorithm.
//!
//! It is common to set up the inference algorithm in this pattern:
//!
//! ```ignore
//! fn infer(solver: Solver<Expr>, story: &[Expr]) -> Option<Expr> {
//!     let places = &[
//!         University, CoffeeBar
//!     ];
//!
//!     for expr in story {
//!         if let &HadChild {father, mother, ..} = expr {
//!             let new_expr = Married {man: father, woman: mother};
//!             if solver.can_add(&new_expr) {return Some(new_expr);}
//!         }
//!
//!         if let &Married {man, woman} = expr {
//!             let new_expr = FellInLove {man, woman};
//!             if solver.can_add(&new_expr) {return Some(new_expr);}
//!         }
//!
//!         ...
//!     }
//!     None
//! }
//! ```
//!
//! The `solver.can_add` call checks whether the fact is already inferred.
//! It is also common to create lists of items to iterate over,
//! and use it in combination with the cache to improve performance of lookups.

use std::hash::Hash;
use std::collections::HashSet;

/// Stores solver error.
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum Error {
    /// Failed to reach the goal.
    Failure,
    /// Reached maximum proof size limit.
    MaxSize,
}

/// Solver argument to inference function.
pub struct Solver<'a, T, A = ()> {
    /// A hash set used check whether a fact has been inferred.
    pub cache: &'a HashSet<T>,
    /// A filter cache to filter out facts deliberately.
    ///
    /// This is used to e.g. reduce proofs automatically.
    pub filter_cache: &'a HashSet<T>,
    /// Stores acceleration data structures, reused monotonically.
    pub accelerator: &'a mut A,
}

impl<'a, T, A> Solver<'a, T, A> where T: Hash + Eq {
    /// Returns `true` if new expression can be added to facts.
    pub fn can_add(&self, new_expr: &T) -> bool {
        !self.cache.contains(new_expr) &&
        !self.filter_cache.contains(new_expr)
    }
}

/// Solves without reducing.
pub fn solve_with_accelerator<T: Clone + PartialEq + Eq + Hash, A>(
    start: &[T],
    goal: &[T],
    max_size: Option<usize>,
    filter: &[T],
    order_constraints: &[(T, T)],
    infer: fn(Solver<T, A>, story: &[T]) -> Option<T>,
    accelerator: &mut A,
) -> (Vec<T>, Result<(), Error>) {
    let mut cache = HashSet::new();
    for s in start {
        cache.insert(s.clone());
    }
    let mut filter_cache: HashSet<T> = HashSet::new();
    for f in filter {
        filter_cache.insert(f.clone());
    }
    let mut res: Vec<T> = start.into();
    loop {
        if goal.iter().all(|e| res.iter().any(|f| e == f)) {
            break;
        }
        if let Some(n) = max_size {
            if res.len() >= n {return (res, Err(Error::MaxSize))};
        }

        // Modify filter to prevent violation of order-constraints.
        let mut added_to_filter = vec![];
        for (i, &(ref a, ref b)) in order_constraints.iter().enumerate() {
            if !cache.contains(a) && !filter_cache.contains(b) {
                added_to_filter.push(i);
            }
        }
        for &i in &added_to_filter {
            filter_cache.insert(order_constraints[i].1.clone());
        }

        let expr = if let Some(expr) = infer(Solver {
                cache: &cache,
                filter_cache: &filter_cache,
                accelerator,
            }, &res) {
            expr
        } else {
            return (res, Err(Error::Failure));
        };
        res.push(expr.clone());
        cache.insert(expr);

        // Revert filter.
        for &i in &added_to_filter {
            filter_cache.remove(&order_constraints[i].1);
        }
    }
    (res, Ok(()))
}

/// Solves without reducing.
pub fn solve<T: Clone + PartialEq + Eq + Hash>(
    start: &[T],
    goal: &[T],
    max_size: Option<usize>,
    filter: &[T],
    order_constraints: &[(T, T)],
    infer: fn(Solver<T>, story: &[T]) -> Option<T>
) -> (Vec<T>, Result<(), Error>) {
    solve_with_accelerator(start, goal, max_size, filter, order_constraints, infer, &mut ())
}


/// Solves and reduces the proof to those steps that are necessary.
///
/// Uses an accelerator constructor initalized from start and goal.
pub fn solve_and_reduce_with_accelerator<T: Clone + PartialEq + Eq + Hash, A>(
    start: &[T],
    goal: &[T],
    mut max_size: Option<usize>,
    filter: &[T],
    order_constraints: &[(T, T)],
    infer: fn(Solver<T, A>, story: &[T]) -> Option<T>,
    accelerator: fn(&[T], &[T]) -> A,
) -> (Vec<T>, Result<(), Error>) {
    let (mut res, status) = solve_with_accelerator(start, goal, max_size, filter,
        order_constraints, infer, &mut accelerator(start, goal));
    if status.is_err() {return (res, status)};

    // Check that every step is necessary.
    max_size = Some(res.len());
    let mut new_filter: Vec<T> = filter.into();
    loop {
        let old_len = res.len();
        for i in (0..res.len()).rev() {
            if goal.iter().any(|e| e == &res[i]) {continue;}

            new_filter.push(res[i].clone());

            if let (solution, Ok(())) = solve_with_accelerator(start, goal, max_size,
                &new_filter, order_constraints, infer, &mut accelerator(start, goal)) {
                if solution.len() < res.len() &&
                   solution.iter().all(|e| res.iter().any(|f| e == f))
                {
                    max_size = Some(solution.len());
                    res = solution;
                    break;
                }
            }

            new_filter.pop();
        }

        if res.len() == old_len {break;}
    }

    (res, Ok(()))
}

/// Solves and reduces the proof to those steps that are necessary.
pub fn solve_and_reduce<T: Clone + PartialEq + Eq + Hash>(
    start: &[T],
    goal: &[T],
    max_size: Option<usize>,
    filter: &[T],
    order_constraints: &[(T, T)],
    infer: fn(Solver<T>, story: &[T]) -> Option<T>
) -> (Vec<T>, Result<(), Error>) {
    solve_and_reduce_with_accelerator(start, goal, max_size, filter,
                                      order_constraints, infer, |_, _| ())
}

/// Searches for matches by a pattern.
///
/// - `pat` specifies the map and acceptance criteria
/// - `max_size` specifies the maximum size of proof
///
/// Returns `Ok` if all rules where exausted.
/// Returns `Err` if the maximum size of proof was exceeded.
pub fn search_with_accelerator<T, F, U, A>(
    start: &[T],
    pat: F,
    max_size: Option<usize>,
    filter: &[T],
    order_constraints: &[(T, T)],
    infer: fn(Solver<T, A>, story: &[T]) -> Option<T>,
    accelerator: &mut A,
) -> (Vec<U>, Result<(), Error>)
    where T: Clone + PartialEq + Eq + Hash,
          F: Fn(&T) -> Option<U>
{
    let mut cache = HashSet::new();
    for s in start {
        cache.insert(s.clone());
    }
    let mut filter_cache: HashSet<T> = HashSet::new();
    for f in filter {
        filter_cache.insert(f.clone());
    }
    let mut res: Vec<T> = start.into();
    let mut matches: Vec<U> = vec![];

    for expr in start {
        if let Some(val) = (pat)(expr) {
            matches.push(val);
        }
    }

    loop {
        if let Some(n) = max_size {
            if res.len() >= n {break};
        }

        // Modify filter to prevent violating of order-constraints.
        let mut added_to_filter = vec![];
        for (i, &(ref a, ref b)) in order_constraints.iter().enumerate() {
            if !cache.contains(a) && !filter_cache.contains(b) {
                added_to_filter.push(i);
            }
        }
        for &i in &added_to_filter {
            filter_cache.insert(order_constraints[i].1.clone());
        }

        let expr = if let Some(expr) = infer(Solver {
                cache: &cache,
                filter_cache: &filter_cache,
                accelerator,
            }, &res) {
            expr
        } else {
            return (matches, Ok(()));
        };
        res.push(expr.clone());

        if let Some(val) = (pat)(&expr) {
            matches.push(val);
        }

        cache.insert(expr);

        // Revert filter.
        for &i in &added_to_filter {
            filter_cache.remove(&order_constraints[i].1);
        }

    }
    (matches, Err(Error::MaxSize))
}

/// Searches for matches by a pattern.
///
/// - `pat` specifies the map and acceptance criteria
/// - `max_size` specifies the maximum size of proof
///
/// Returns `Ok` if all rules where exausted.
/// Returns `Err` if the maximum size of proof was exceeded.
pub fn search<T, F, U>(
    start: &[T],
    pat: F,
    max_size: Option<usize>,
    filter: &[T],
    order_constraints: &[(T, T)],
    infer: fn(Solver<T>, story: &[T]) -> Option<T>
) -> (Vec<U>, Result<(), Error>)
    where T: Clone + PartialEq + Eq + Hash,
          F: Fn(&T) -> Option<U>
{
    search_with_accelerator(start, pat, max_size, filter, order_constraints, infer, &mut ())
}