1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
//! definition of Bind and Monad traits based monadic macro 

use std::iter::{IntoIterator, Iterator, FlatMap};
use std::collections::{LinkedList, VecDeque};

/// `Bind` as supertrait of `IntoIterator`
///
/// IntoIterator brings `into_iter().flat_map()` where its lazy result type FlatMap implements IntoIterator.
/// It has been wrapped as `bind()` in trait Bind.
///
/// There are transitive implementation relations for some structures that does not implement IntoIterator to be instances of IntoIterator: 
///
/// All iterators implement IntoIterator where into_iter() returns the self iterator structure
/// as [documented](https://doc.rust-lang.org/stable/core/iter/#for-loops-and-intoiterator) 
///
/// Iterator and IntoIterator trait imports are [predefined](https://doc.rust-lang.org/std/prelude/index.html#prelude-contents)
///
/// Because into_iter() passes self by value, a `Sized` constraint (size known at compile time)
/// is required for Self in the use of `bind()`.
pub trait Bind: IntoIterator { 
     
     // into_iter() passes self by value, so Self: Sized is required
     fn bind<U, F>(self, f: F) -> FlatMap<Self::IntoIter, U, F>
        where 
          F: Fn(Self::Item) -> U,
          U: IntoIterator,
          Self: Sized {
        self.into_iter().flat_map( f) 
     }
   }
   
   
impl<R> Bind for R where R: IntoIterator {}  


pub trait Monad: Bind { 

     fn pure(x: Self::Item) -> Self;
   }

impl<T> Monad for Option<T> {
   fn pure(x: T) -> Self {
      Some(x)
   }
}

impl<T,E> Monad for Result<T,E>{
   fn pure(x: T) -> Self {
      Ok(x)
   }
}

impl<T> Monad for Vec<T>{
   fn pure(x: T) -> Self {
      let mut v = Self::new();
      v.push(x);
      v
   }
}

impl<T> Monad for LinkedList<T>{
   fn pure(x: T) -> Self {
      let mut v = Self::new();
      v.push_front(x);
      v
   }
}

impl<T> Monad for VecDeque<T>{
   fn pure(x: T) -> Self {
      let mut v = Self::new();
      v.push_front(x);
      v
   }
}

pub trait MZero: Monad { 

     fn mzero() -> Self;
   }
   
impl<T> MZero for Option<T> {

   fn mzero() -> Self {None}
}

impl<T> MZero for Vec<T> {

   fn mzero() -> Self {Self::new()}
}

impl<T> MZero for LinkedList<T> {

   fn mzero() -> Self {Self::new()}
}

impl<T> MZero for VecDeque<T> {

   fn mzero() -> Self {Self::new()}
}

pub trait MPlus: MZero { 
   fn mplus(&mut self, _: &mut Self) ;
}

impl<T> MPlus for Vec<T> {
   fn mplus(&mut self, other: &mut Self) {
      self.append( other);
   }
}

impl<T> MPlus for LinkedList<T> {
   fn mplus(&mut self, other: &mut Self) {
      self.append( other);
   }
}

impl<T> MPlus for VecDeque<T> {
   fn mplus(&mut self, other: &mut Self) {
      self.append( other);
   }
}

/// macro for iterables (IntoIterator) as monads enabling monad comprehensions over iterables
///
/// You can use: 
/// * `pure return_expresion`    to return an expression value
/// * `monadic_expression`       to end with a monad expression
/// * `v <- pure return_expresion`  to lift a rhs expression value with Option::pure(x)
/// * `v <- monadic_expression`  to use the monad result
/// * `&v <- &container`  to use a reference item result from a by reference container
/// * `_ <- monadic_expression`  to ignore the monad result
/// * `let z = expression`       to combine monad results
/// * `guard boolean_expression` to filter results
///
#[macro_export]
macro_rules! mdo {
  (pure $e:expr                           ) => [Option::pure($e)];
  (let $v:ident = $e:expr ; $($rest:tt)*) => [Option::pure($e).bind( move |$v| { mdo!($($rest)*)} )];
  (guard $boolean:expr ; $($rest:tt)*) => [(if $boolean {Some(())} else {None}).bind( move |_| { mdo!($($rest)*)} )];
  (_ <- $monad:expr ; $($rest:tt)* ) => [($monad).bind( move |_| { mdo!($($rest)*)} )];
  (&$v:ident <- $monad:expr ; $($rest:tt)* ) => [($monad).bind( move |&$v| { mdo!($($rest)*)} )];
  ($v:ident <- pure $e:expr ; $($rest:tt)* ) => [Option::pure($e).bind( move |$v| { mdo!($($rest)*)} )];
  ($v:ident <- $monad:expr ; $($rest:tt)* ) => [($monad).bind( move |$v| { mdo!($($rest)*)} )];
  ($monad:expr                            ) => [$monad];
}

#[cfg(test)]
mod tests {
    use crate::monad::{Bind, Monad};
    use quickcheck::quickcheck;
    
    quickcheck!{
        fn prop_monad_comprehension_vs_iteration( xs: Vec<i32>) -> bool {
        
            // monadic
            let ys = mdo!{
                &v <- &xs;
                guard v < 4;
                pure v * 2
            }.collect::<Vec<i32>>();
            
            // as iterator
            let zs = (&xs).into_iter().filter(|&v| v < &4).map(|v| v*2).collect::<Vec<i32>>();
            
            ys == zs
        }
    }    
}